Advertisement

Principal ideal theorems

  • Melvin Hochster
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 734)

Keywords

Exact Sequence Local Ring Maximal Ideal Direct Summand Commutative Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A1] M. Auslander, Modules over unramified regular local rings, Illinois J. Math. 5 (1961), 631–645.MathSciNetzbMATHGoogle Scholar
  2. [A2] M. Auslander, Modules over unramified regular rings, Proc. Intern. Congress of Math., 1962, 230–233.Google Scholar
  3. H. Bass, On the ubiquity of Gorenstein rings, Math. Z. 82 (1963), 8–28.MathSciNetCrossRefzbMATHGoogle Scholar
  4. D. Eisenbud, Homological algebra on a complete intersection, with an application to group representations, preprint, (Brandeis University).Google Scholar
  5. D. Eisenbud and E.G. Evans, A generalized principal ideal theorem, Nagoya Math. J. 62 (1976), 41–53.MathSciNetCrossRefzbMATHGoogle Scholar
  6. E.G. Evans, Bourbaki's theorem and algebraic K-theory, J. of Algebra 41 (1976), 108–195.CrossRefzbMATHGoogle Scholar
  7. P. Griffith, A representation theorem for complete local rings, J. Pure and Applied Algebra 7 (1976), 303–315.MathSciNetCrossRefzbMATHGoogle Scholar
  8. H. Hironaka, Resolution of singularities of an algebraic variety over a field of characteristic 0, Annals of Math. 79 (1964), 205–326.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [Ho1]] M. Hochster, Prime ideal structure in commutative rings, Trans. Amer. Math. Soc. 142 (1969), 43–60.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [Ho2] M. Hochster, Cohen-Macaulay modules, Proc. Kansas Commutative Algebra Comference, Lecture Notes in Math., No. 311, Springer-Verlag, Berlin, Heidelberg, New York, 1973, 120–152.Google Scholar
  11. [Ho3] M. Hochster, Contracted ideals from integral extensions of regular rings, Nagoya Math. J. 51 (1973), 25–43.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [Ho4] M. Hochster, "Topics in the Homological Theory of Modules over Commutative Rings", C.B.M.S. Regional Conference Series in Math., No. 24, Amer. Math. Soc., Providence, RI, 1974.zbMATHGoogle Scholar
  13. [Ho5] M. Hochster, Big Cohen-Macaulay modules and algebras and embeddability in rings of Witt vectors, Proc. of the Queen's Univ. Commutative Algebra Conference (Kingston, Ontario, Canada, 1975), Queen's Papers in Pure and Applied Math., No. 42, 1975, 106–195.Google Scholar
  14. [Ho6] M. Hochster, Some applications of the Frobenius in characteristic 0, Bull. Amer. Math. Soc., to appear.Google Scholar
  15. [Ho7] M. Hochster, Canonical elements in local cohomology modules, in preparation.Google Scholar
  16. W. Krull, Primidealketten in allgemeinen Ringbereichen, S.-B. Heidelbergen Akad. Wiss. Math.-Natur. K1. (1928), 7.Google Scholar
  17. [PS1] C. Peskine and L. Szpiro, Dimension projective et cohomologie locale, Publ. Math. I.H.E,S., Paris, No. 42, (1973), 323–295.zbMATHGoogle Scholar
  18. [PS2] C. Peskine and L. Szpiro, Syzygies et multiplicités, C.R. Acad. Sci. Paris, Sér. A 278 (1974), 1421–1424.MathSciNetzbMATHGoogle Scholar
  19. [R1] P. Roberts, Two applications of dualizing complexes over local rings, Ann. Sci. Ec. Norm. Sup. (4) 9, (1976), 103–106.MathSciNetzbMATHGoogle Scholar
  20. [R2] P. Roberts, Abelian extensions of regular local rings, preprint.Google Scholar
  21. J.-P. Serre, "Algèbre Locale. Multiplicités." Lecture Notes in Math., No. 11, Springer-Verlag, Berlin, Heidelberg, New York, 1965.zbMATHGoogle Scholar
  22. I.R. Shafarevich, "Basic Algebraic Geometry", Springer-Verlag, Berlin, Heidelberg, New York, 1977.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Melvin Hochster
    • 1
  1. 1.University of MichiganAnn Arbor

Personalised recommendations