Advertisement

Lower K-theory, regular rings and operator algebras — A survey

  • David Handelman
  • John Lawrence
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 734)

Keywords

Rank Function Direct Limit Regular Ring Modular Lattice Matrix Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

§7. References

  1. [1]
    S. Berberian, The regular ring of a finite AW*-algebra, Annals of Math. 65 (1957), 224–240.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    _____, NxN matrices over an AW*-algebra, Amer. J. Math. 80 (1958), 37–44.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    _____, The Regular ring of a finite Baer*-ring, J. Alg. 23 (1972), 35–65.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    _____, Baer*-Rings, Grundlehren, Band 195, Springer-Verlag, (1972), New York.Google Scholar
  5. [5]
    J. Cuntz, The structure of multiplication and addition in simple C*-algebras, Math. Scand. 40 (1977), 215–233.MathSciNetzbMATHGoogle Scholar
  6. [6]
    ___, Dimension functions on simple C*-algebras (to appear).Google Scholar
  7. [7]
    G. Ehrlich, Unit regular rings, Portugal Math. 27 (1968), 209–212.MathSciNetzbMATHGoogle Scholar
  8. [8]
    G. Elliott, On the classification of inductive limits of sequences of semisimple finite-dimensional algebras, J. Alq. 38 (1976), 29–44.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    K. Goodearl, Von Neumann Regular Rings, (to appear).Google Scholar
  10. [10]
    K. Goodearl and D. Handelman, KO and rank functions of regular rings, J. of Pure and Applied Algebra, 7 (1976), 195–216.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    K. Goodearl, D. Handelman, and J. Lawrence, xQ-continuous rings and affine functions on a Choquet simplex, (to appear).Google Scholar
  12. [12]
    I. Hafner, The regular ring and the maximal ring of quotients of a finite Baer*-ring, Michgan Math. J. 21 (1974), 153–160.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    D. Handelman, Perspectivity and cancellation in regular rings, J. Alg. 48 (1977), 1–16.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    _____, Coordination applied to finite Baer*-rings, Trans. Amer. Math. Soc. 235 (1978), 1–34.MathSciNetzbMATHGoogle Scholar
  15. [15]
    _____, Finite Rickart C*-algebras and their properties, Advances in Math. (to appear).Google Scholar
  16. [16]
    _____, Finite Rickart C*-algebras and their properties II, Advances in Math. (to appear).Google Scholar
  17. [17]
    _____, Stable range in AW*-algebras, Proc. Amer. Math. Soc. (to appear).Google Scholar
  18. [18]
    _____, KO of von Neumann and AF C*-algebras, Oxford Quart. J. (to appear).Google Scholar
  19. [19]
    D. Handelman, D. Higgs and J. Lawrence, Directed abelian groups, X0-continuous rings and Rickart C*-algebras, (to appear).Google Scholar
  20. [20]
    D. Handelman and J. Lawrence, Finite Rickart C*-algebras, Bull. Amer. Math. Soc. 84 (1978), 157–158.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    I. Kaplansky, Projections in Banach algebras, Annals of Math. 53 (1951), 235–249.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    _____, Any orthocomplemented complete modular lattice is a continuous geometry, Annals of Math. 61 (1955), 524–541.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    _____, Rings of Operators, Benjamin (1968), New York.zbMATHGoogle Scholar
  24. [24]
    F. Murray and J. von Neumann, On rings of operators, Annals of Math. 37 (1936), 116–165.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    J. von Neumann, On regular rings, Proc. Nat. Acad. Sci. 22 (1936), 707–713.CrossRefzbMATHGoogle Scholar
  26. [26]
    E. Pyle, The regular ring and the maximal ring of quotients of a finite Baer*-ring, Trans. Amer. Math. Soc. 203 (1975), 201–213.MathSciNetzbMATHGoogle Scholar
  27. [27]
    J.-E. Roos, Sur l'anneau maximal de fractions des AW*-algèbres et des anneaux de Baer, C. R. Acad. Sci. Paris Ser A-B, 266 (1968), A120–A133.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • David Handelman
    • 1
  • John Lawrence
    • 2
  1. 1.University of OttawaOttawaCanada
  2. 2.University of WaterlooWaterlooCanada

Personalised recommendations