The state space of KOof a ring

  • K. R. Goodearl
Conference paper
Part of the Lecture Notes in Mathematics book series (LNM, volume 734)


State Space Extreme Point Direct Summand Compact Convex Subset Linear Topological Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. M. Alfsen, Compact Convex Sets and Boundary Integrals Ergebnisse der Math., Band 57 Berlin (1971) Springer-Verlag.CrossRefGoogle Scholar
  2. 2.
    G. M. Bergman, "Coproducts and some universal ring constructions" Trans. American Math. Soc. 200 (1974) 33–88.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    D. Eisenbud and J. C. Robson, "Hereditary noetherian prime rings" J. Algebra 16 (1970) 86–104.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    K. R. Goodearl, Von Neumann Regular Rings London (197-) Pitman.zbMATHGoogle Scholar
  5. 5.
    K. R. Goodearl and R. B. Warfield, Jr., "Simple modules over hereditary noetherian prime rings" J. Algebra (to appear).Google Scholar
  6. 6.
    J. L. Kelley and I. Namioka, Linear Topological Spaces Princeton (1963) Van Nostrand.CrossRefzbMATHGoogle Scholar
  7. 7.
    T. H. Lenagan, "Bounded hereditary noetherian prime rings" J. London Math. Soc. 6 (1973) 241–246.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    R. R. Phelps, Lectures on Choquet's Theorem Princeton (1966) Van Nostrand.zbMATHGoogle Scholar
  9. 9.
    R. G. Swan, Algebraic K-Theory Springer Lecture Notes No. 76 Berlin (1968) Springer-Verlag.zbMATHGoogle Scholar
  10. 10.
    J. C. Robson, "Idealizers and hereditary noetherian prime rings" J. Algebra 22 (1972) 45–81.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Z. Semadeni, Banach Spaces of Continuous Functions Warsaw (1971) PWN (Polish Scientific Publishers).Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • K. R. Goodearl
    • 1
  1. 1.University of UtahSalt Lake CityUSA

Personalised recommendations