Advertisement

Multiplicative excessive measures and duality between equations of Boltzmann and of branching processes

  • Masao Nagasawa
Seconde Partie: Exposes 1973/74
Part of the Lecture Notes in Mathematics book series (LNM, volume 465)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    T.E. Harris, The theory of branching processes. (1963) Springer.Google Scholar
  2. [2]
    N. Ikeda—M. Nagasawa—S. Watanabe, Branching Markov processes I,II,III, Journal of Mth. Kyoto Univ. Vol. 8 (1968) 233–278, 365–410, vol. 9 (1969) 95–160.MathSciNetzbMATHGoogle Scholar
  3. [3]
    H.P. McKean, A class of Markov processes associated with nonlinear parabolic equations, Proc. Nat. Acad. Sci. vol. 56 (1966) 1907–1911.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    —, Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas, Archive for rational mechanics and analysis. vol. 21 (1966) 343–367.MathSciNetCrossRefGoogle Scholar
  5. [5]
    —, An exponential formula for solving Boltzmann's equation for a Maxwellian gas, J. of Combinatorial theory. vol. 2 (1967) 358–382.MathSciNetzbMATHCrossRefGoogle Scholar
  6. [6]
    M. Nagasawa—K. Sato, Some theorems on time change and killing of Markov processes, Ködai Math. Sem. Rep. vol. 15 (1963) 195–219.MathSciNetzbMATHCrossRefGoogle Scholar
  7. [7]
    M. Nagasawa, Time reversions of Markov processes, Nagoya Math. Journal. vol. 24 (1964) 177–204.MathSciNetzbMATHGoogle Scholar
  8. [8]
    M. Nagasawa, Branching property of Markov processes, Lecture notes in Mathematics, vol. 258, Séminaire de Probabilités de Strasbourg VI, Springer 1972, 177–197.Google Scholar
  9. [9]
    —, Multiplicative excessive measures of branching processes, Proc. Japan Acad. vol. 49 (1973) 497–499.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    Y. Takahashi, Markov semi-groups with simple interaction I,II. Proc. Japan Acad. vol. 47 (1971) Suppl. II, 974–978, 1019–1024.MathSciNetzbMATHCrossRefGoogle Scholar
  11. [11]
    H. Tanaka, Propagation of chaos for certain purely discontinuous Markov processes with interactions, J. Fac. Sci. Univ. Tokyo, vol. 17 (1970) 259–272.zbMATHGoogle Scholar
  12. [12]
    —, Purely discontinuous Markov processes with nonlinear generators and their propagation of chaos, Teor. Ber. prim. vol. 15 (1970) 599–621.zbMATHGoogle Scholar
  13. [13]
    T. Ueno, A class of Markov processes with interactions I,II, Proc Japan Acad. vol. 45 (1969) 641–646, 995–1000.MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    —, A class of Markov processes with non-linear bounded generators, Japanese J. of Math. vol. 38 (1969) 19–38.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1975

Authors and Affiliations

  • Masao Nagasawa
    • 1
    • 2
  1. 1.Mathematisches InstitutUniversität Erlange-NürnbergErlangen
  2. 2.Department of Applied PhysicsTokyo Institute of TechnologyTokyo

Personalised recommendations