Advertisement

Mesures d'information et représentation de semi-groupes associé

  • F. Nanopoulos
Seconde Partie: Exposes 1973/74
Part of the Lecture Notes in Mathematics book series (LNM, volume 465)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. [1]
    DAROPCZY (Z.) “Uber eine Charakterisierung der Shannon'schen Entropie”. Statistica 27, 1967, p. p. 199–205.MathSciNetGoogle Scholar
  2. [2]
    FADEEV (D.K.) “Zum Begriff der Entropie eines endlichen Wahrscheinlich keitsschema”. Uspehi Mat.Google Scholar
  3. [3]
    FAUCETT (W.M) “Compact semi-groups irreducibily connected between two idempotents”. Proc. Amer. Math. Soc., 6, 1955, p. 741.MathSciNetzbMATHCrossRefGoogle Scholar
  4. [4]
    KAMPE de FERIET (J.) “Mesure d'information fournie par un évènement”. Séminaire sur les questionnaires I.H.P. (1971).Google Scholar
  5. [5]
    KAMPE de FERIET (J.) “Information et Probabilité”. C.R.A.S., Paris, 265 A (1969).Google Scholar
  6. [6]
    KAMPE de FERIET (J.)-FORTE (B.)-BENVENUTI (A.) “Forme générale de l'opération de composition continue d'une information”, C.R.A.S., Paris, 269 A (1969).Google Scholar
  7. [7]
    KINTCHINE (A.I.) “Mathematical Fundations of information theory”. Dover Publications, Inc., New-York (1957).Google Scholar
  8. [8]
    LING (C.H.) “Representation of associative functions”. Publicationes Math., 12, 1965, p. 189.Google Scholar
  9. [9]
    MOSTERT (P.S.)-SHIELDS (A.L.) On the structure of semigroups on a compact maniforld with boundary. Ann. of Math., 65, 1957, p. 117.MathSciNetzbMATHCrossRefGoogle Scholar
  10. [10]
    PINTACUDA (N.) “Shannon Entropy. A more general derivation”. Statistica no 2 anno XXVI, 1966, p.p. 511–524.Google Scholar
  11. [11]
    RENYI (A.) “Calcul des probabilités”. Dunod, Paris, 1966.zbMATHGoogle Scholar
  12. [12]
    SHANNON (C.) “The mathematical theory of communications”. Univ. of Illinois Press, Urbana (1948).Google Scholar
  13. [13]
    WIENER (N.) “Cybernetics”. Paris, Hermann, Act. Sc. 1053, (1948).Google Scholar
  14. [14]
    KAPPOS (D.A.) Strukturtheorie der Wahrscheinlichkeits-Felder und Räume, Berlin, Springer (1960), p. 77.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin · Heidelberg 1975

Authors and Affiliations

  • F. Nanopoulos

There are no affiliations available

Personalised recommendations