Skip to main content

Modelling of transient boiling in microgravity

  • Part II 3. Boiling
  • Conference paper
  • First Online:
  • 190 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 467))

Abstract

Under steady conditions of pool boiling, the observed maximum heat flux is described by the so-called Hydrodynamical theory stated by Zuber in 1959. This theory is in a reasonable agreement with experiments under normal gravity, however under vanishing gravity, the experimental maximum heat flux is larger than the one predicted by the Zuber formula. The hydrodynamical theory breaks down.

In unsteady boiling, under very low subcooling and in microgravity conditions, a peak of heat transfer coefficient corresponding to transitory nucleate boiling, is observed after a short time of bubbles formation immediately followed by a dryout and thus by a strong decrease of heat transfer coefficient.

The principal aim of this work is to modelize the maximum heat transfer coefficient observed under microgravity [4] for low subcoolings. The model could be extended to represent boiling phenomenon under microgravity for wider range of conditions.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

ρL :

Liquid density

ρg :

Vapor density

b:

The distance between the columns in Helmholtz instability

σ:

Surface tension

V g :

Bubble growth rate=dR/dτ

τ,t:

Time

R:

Bubble’s radius

\(Ja = \frac{{T_W - T_S }}{{H_{fg} \rho _g }}\rho _L C_L\) :

Jacob number

a L :

Liquid thermal diffusivity

b:

Constant for bubbles’ growth parameters

C PL :

Liquid heat capacity

λ L :

Liquid thermal conductivity

No :

Initial potential nuclei density

q:

Nucleation frequency

V S〉:

Average growth rate

h:

Heat transfer coefficient

T s :

Saturation temperature

α:

The surface fraction covered by vapor

T w :

Wall temperature

δ:

boundary layer thickness

η:

Dynamic viscosity

\(\dot q\) :

Heat flux

References

  1. N. Zuber, Atomic Energy Commission Report No AECU-4439, (1959).

    Google Scholar 

  2. J.H. Lienhard, K. Dhir, J. Heat Transfer, Trans. ASME, 158, pp. 97–152, (1973).

    Google Scholar 

  3. R. Siegel and C. Usiskin, J. Heat Transfer, Trans., ASME, 81, p. 3, (1959).

    Google Scholar 

  4. H. Merte, H.S. Lee and J.S. Ervin, Microgravirty Sc. and Technology, VII, pp. 173–179, (1994).

    ADS  Google Scholar 

  5. A. Steinchen, A. Sanfeld, L. Tadrist and J. Pantaloni, Microgravity Sc and Technology, VII/2, pp. 180–186, (1994).

    ADS  Google Scholar 

  6. H.J. Palmer, J. Fluid Mechanics, 15, p. 487, (1976).

    Article  ADS  Google Scholar 

  7. H. Beer, Heat Mass Transfer, 2, pp. 2 311–370 (1969).

    Google Scholar 

  8. K. Hickman, Ind. and Eng. Chem., 44, P. 1892, (1952).

    Article  Google Scholar 

  9. M. Avrami, J. Chem. Phys. 9, P. 177, (1941).

    Article  ADS  Google Scholar 

  10. E. Piorkowska and A. Galeski, Journal of Polymer Physics, 23, p. 1723, (1985).

    Article  ADS  Google Scholar 

  11. N. Billon and J.M. Haudin, Colloid and Poly. Sc., 271, pp. 343–356, (1993).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Annie Steinchen

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this paper

Cite this paper

Sefiane, K., Steinchen, A. (1996). Modelling of transient boiling in microgravity. In: Steinchen, A. (eds) Dynamics of Multiphase Flows Across Interfaces. Lecture Notes in Physics, vol 467. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102668

Download citation

  • DOI: https://doi.org/10.1007/BFb0102668

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60848-6

  • Online ISBN: 978-3-540-49620-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics