Advertisement

On the magnetic collimation of jets from young stellar objects

  • C. Sauty
  • K. Tsinganos
  • E. Trussoni
Part V: Outflows—Theory
Part of the Lecture Notes in Physics book series (LNP, volume 465)

Abstract

Self-similar assumptions are commonly used to model stationary axisym-metric jets from keplerian discs. Conversely, we propose in this paper a self-similar model where the outflow is expelled from the star itself and its close environment. A comparison of these two self-similar approaches is given. We apply our analysis to describe the central optical part of jets from young stars. A simple scheme is drawn to link the parameters with the observables. Thus the jet morphology can be reproduced and a scenario is given for the transition of the flow from jet to a solar-type wind as the star evolves towards the main sequence. Finally, we briefly outline the properties of critical points under self-similarity through the example of the present model.

Keywords

Solar Wind Accretion Disc Mass Loss Rate Young Star Magnetic Rotator 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bardeen J.M., Berger B.K., 1978, ApJ, 221, 105CrossRefADSGoogle Scholar
  2. Belcher J.W., MacGregor K.B., 1976, ApJ, 210, 498CrossRefADSGoogle Scholar
  3. Blandford R.D., Payne D.G., 1982, MNRAS, 199, 883ADSzbMATHGoogle Scholar
  4. Bogovalov S.V., 1994, MNRAS, 270, 721ADSGoogle Scholar
  5. Bouvier J., Bertout C., Benz W., Mayor M., 1986, A&A, 165, 110ADSGoogle Scholar
  6. Cantó J., 1980, A&A, 86, 327ADSGoogle Scholar
  7. Chan K.L., Henriksen R.H., 1980, ApJ, 241, 534CrossRefADSGoogle Scholar
  8. Contopoulos J., Lovelace R.V.E. 1994, ApJ, 429, 139CrossRefADSGoogle Scholar
  9. Ferreira J., 1994, thèse de doctorat de l’Université de Grenoble, Grenoble.Google Scholar
  10. Ferreira J., Pelletier G., 1995, A&A, 295, 807ADSGoogle Scholar
  11. Hartmann L., MacGregor K.B., 1982, ApJ, 259, 180CrossRefADSGoogle Scholar
  12. Heyvaerts J., Norman C.A., 1989, ApJ, 347, 1055CrossRefMathSciNetADSGoogle Scholar
  13. Königl A., 1982, ApJ, 261, 115CrossRefADSGoogle Scholar
  14. Koupelis T., 1990, ApJ, 363, 79CrossRefADSGoogle Scholar
  15. Lovelace R.V.E., Berk H.L., Contopoulos J., 1991, ApJ, 379, 696CrossRefADSGoogle Scholar
  16. Lovelace, R.V.E., Contopoulos J., 1992, in: Ann. NY Acad. Sci. No. 675, 7th Florida Workshop on Nonlinear Astronomy: Astrophysical Disks, ed. S.F. Dermott et al., p. 286Google Scholar
  17. Malbet, F., 1993, Environnement Circumstellaire des Etoiles Jeunes, thèse de doctorat. Université Paris VII, ParisGoogle Scholar
  18. Mundt R., Ray T.P., Buehrke T., Raga A.C., 1990, A&A, 232, 37ADSGoogle Scholar
  19. Parker E.N., 1958, ApJ, 123, 664CrossRefADSGoogle Scholar
  20. Pelletier G., Pudritz R.E., 1992, ApJ, 394, 117CrossRefADSGoogle Scholar
  21. Pudritz R.E., Norman C.A., 1983, ApJ, 274, 677CrossRefADSGoogle Scholar
  22. Pudritz R.E., Norman C.A., 1986, ApJ, 301, 571CrossRefADSGoogle Scholar
  23. Pudritz R.E., 1991, The Physics of Disk Winds. In: Lada C.J., Kylafis N.D. (eds.) Proc. NATO ASI The Physics of Star Formation and Early Stellar Evolution, Kluwer, Dordrecht, p. 539Google Scholar
  24. Raga A.C., Cantó J., 1989, 344, 404Google Scholar
  25. Raga A.C., Cantó J., Biro S., 1993, MNRAS, 260, 163ADSGoogle Scholar
  26. Reipurth B., 1991, Herbig-Haro Objects. In: Lada C.J., Kylafis N.D. (eds.) Proc. NATO ASI The Physics of Star Formation and Early Stellar Evolution, Kluwer, Dordrecht, p. 497.Google Scholar
  27. Rosso F., Pelletier G., 1994, A&A, 287, 325ADSGoogle Scholar
  28. Safier, 1993a, ApJ, 408, 115CrossRefADSGoogle Scholar
  29. Safier, 1993b, ApJ, 408, 148CrossRefADSGoogle Scholar
  30. Sakurai T., 1985, A&A, 152, 121zbMATHADSGoogle Scholar
  31. Sakurai T., 1987, PASJ, 39, 821ADSGoogle Scholar
  32. Sakurai T., 1990, Computer Physics Reports, 12, 247CrossRefADSGoogle Scholar
  33. Sauty C., 1993, thèse de doctorat de l’Université de Paris 7, Paris.Google Scholar
  34. Sauty C., Tsinganos K., 1994, A&A, 287, 893ADSGoogle Scholar
  35. Shibata K., Uchida Y., 1987, PASJ, 39, 559ADSGoogle Scholar
  36. Shu F.H., Najita J., Ostriker E., Wilkin F., Ruden S., Lizano S., 1994a, ApJ, 429, 781CrossRefADSGoogle Scholar
  37. Shu F.H., Najita J., Ruden S., Lizano S., 1994b, ApJ, 429, 797CrossRefADSGoogle Scholar
  38. Trussoni E., Tsinganos K., 1993, A&A, 269, 589ADSGoogle Scholar
  39. Tsinganos K., 1982, ApJ, 253, 775CrossRefMathSciNetADSGoogle Scholar
  40. Tsinganos K., Sauty C., 1992a, A&A, 255, 405ADSGoogle Scholar
  41. Tsinganos K., Sauty C., 1992b, A&A, 257, 790ADSGoogle Scholar
  42. Tsinganos K., Sauty C., Trussoni E., Contopoulos J., Surlantzis G., 1995, (in preparation)Google Scholar
  43. Tsinganos K., Trussoni E., 1991, A&A, 249, 156ADSzbMATHGoogle Scholar
  44. Wardle M., Königl A., 1989, ApJ, 410, 218CrossRefADSGoogle Scholar
  45. Washimi H., Shibata S., 1993, MNRAS, 262, 936ADSGoogle Scholar
  46. Weber E.J., Davis L. Jr., 1967, ApJ, 148, 217CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • C. Sauty
    • 1
  • K. Tsinganos
    • 2
  • E. Trussoni
    • 3
  1. 1.Observatoire de ParisDAECMeudonFrance
  2. 2.Dept. of PhysicsUniversity of CreteHeraklionGreece
  3. 3.Osservatorio di TorinoPino TorineseItaly

Personalised recommendations