Star-disk interactions in small N clusters: How to form binary stars

  • J. M. McDonald
  • C. J. Clarke
Part III: Young Stellar Objects and Their Environment
Part of the Lecture Notes in Physics book series (LNP, volume 465)


We investigate the effect of circumstellar disks on the dynamical evolution of a small cluster of protostars formed by ‘prompt initial fragmentation’. In particular we study how the presence of disks affects the resultant mass components of binaries formed in the cluster. We find that when the stars are assigned circumstellar disks the occurrence of lower mass stars in binaries is greatly increased compared with diskless simulations. This is due to the fact that disks both increase the number of binaries formed and also randomise the selection of secondary mass companions to each primary. For a cluster of 10 stars with massive disks the predicted binary fraction is in good agreement with observations. We also find that disks boost the number of triple and quadruple systems formed, and suggest that the eventual disruption of the less hierarchical multiples might account for the excess of binaries among pre-main sequence stars.


Mass Function Massive Star Initial Mass Function Lower Mass Star Tauri Star 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aarseth, S. J., 1985, in: Multiple Time Scales, eds, T. U. Bradibill and B. I. Cohen, Academic Press, New York, p. 377Google Scholar
  2. Anosova, J. P., 1968, Trans. Astron. Obs. Leningr. Univ. 25, 100Google Scholar
  3. Anosova, J. P., 1991, Comm. Astophys. 15, 283ADSGoogle Scholar
  4. Clarke, C. J. & Pringle, J. E., 1991, MNRAS 249, 588ADSGoogle Scholar
  5. Clarke, C. J. & Pringle, J. E., 1992, MNRAS 255, 423ADSGoogle Scholar
  6. Clarke, C. J. & Pringle, J. E., 1993, MNRAS 261, 192ADSGoogle Scholar
  7. Duquennoy, A. & Mayor, M., 1991, A & A 248, 48ADSGoogle Scholar
  8. Eggleton, P. P., Fitchet, M. J. & Tout, C. A., 1989 Astrophys. J. 347, 998CrossRefADSGoogle Scholar
  9. Fischer, D. A. & Marcy, G. W., 1992, ApJ 396, 178CrossRefADSGoogle Scholar
  10. Garmany, C. D., Conti, P.S. & Massey, P., 1980, Astrophys. J. 347, 998Google Scholar
  11. Ghez, A. M., Neugebauer, G. & Matthews, K., 1993, A. J. 166, 2005CrossRefADSGoogle Scholar
  12. Hall, S., Clarke, C.J. & Pringle, J. E., in prep.Google Scholar
  13. Harrington, R. S., 1974, Celest. Mech. 9, 465CrossRefADSzbMATHGoogle Scholar
  14. Harrington, R. S., 1975, AJ 80, 1081CrossRefADSGoogle Scholar
  15. Heller, C. H., 1993, Ap. J. 408, 337CrossRefADSGoogle Scholar
  16. Kiseleva, L. G., Eggleton, P. P. & Orlov, V. V., 1994, MNRAS, 267, 161ADSGoogle Scholar
  17. Kiseleva, L. & Anosova J.P., in prep.Google Scholar
  18. Leinert, Ch., Zinnecker, H., Weitzel, N., Christou, J., Ridgway, S.T., Jameson, R., Hass, M. & Lenzen, R., 1993, Astron & Astrophys 278, 129ADSGoogle Scholar
  19. Lin, D.N.C. & Pringle, J.E., 1987, Astrophys. J. 358, 515CrossRefADSGoogle Scholar
  20. McDonald, J.M. & Clarke, C.J. 1993, MNRAS 262, 800ADSGoogle Scholar
  21. MCDonald, J.M. & Clarke, C.J., 1995, in prep.Google Scholar
  22. Murray, S. & Clarke, C.J., 1993, MNRAS 265 169ADSGoogle Scholar
  23. Ostriker, E., 1994, Phd thesis, University of California, BerkeleyGoogle Scholar
  24. Pringle, J. E., 1989, MNRAS 239, 361ADSGoogle Scholar
  25. Reipurth, B. & Zinnecker, H., 1993, A & A 273, 81ADSGoogle Scholar
  26. Simon, M., Ghez, A. M., Leinert, Ch., Cassar, L., Chen, W. P., Howell, R. R., Jameson, R. F., Matthews, K., Neugebauer, G. & Richichi, A., 1995, Ap.J., 443, 625CrossRefADSGoogle Scholar
  27. van Albada, T.S., 1968, Bull. Astron. Neth. 19, 479ADSGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • J. M. McDonald
    • 1
  • C. J. Clarke
    • 1
  1. 1.Institute of AstronomyCambridgeEngland

Personalised recommendations