Non-linear evolution of cosmological perturbations

  • Sabino Matarrese
Part II Large-scale Structure
Part of the Lecture Notes in Physics book series (LNP, volume 470)


In these lecture notes I review the theory of the non-linear evolution of cosmological perturbations in a self-gravitating collisionless medium, with vanishing vorticity. The problem is first analyzed in the context of the Newtonian approximation, where the basic properties of the Zel'dovich, frozen-flow and adhesion algorithms are introduced. An exact general relativistic formalism is then presented and it is shown how the Newtonian limit, both in Lagrangian and Eulerian coordinates, can be recovered. A general discussion on the possible role of possible relativistic effects in the cosmological structure formation context is finally given.


Dark Matter Deformation Tensor Energy Constraint Newtonian Limit Peculiar Velocity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Buchert, T. 1995, to appear in Proc. Enrico Fermi School, Course CXXXII, Dark Matter in the Universe, Varenna 1995, preprint astro-ph/9509005.Google Scholar
  2. Burgers, J.M. 1974, The Nonlinear Diffusion Equation, Dordrecht: Reidel.zbMATHGoogle Scholar
  3. Catelan, P., Lucchin, F., Matarrese, S. & Moscardini, L. 1995, MNRAS, 276, 39.ADSGoogle Scholar
  4. Coles, P. & Lucchin, F. 1995, Cosmology: The Origin and Evolution of Cosmic Structure, Chichester: Wiley.zbMATHGoogle Scholar
  5. Efstathiou, G., Davis, M., Frenk, C. & White, S.D.M. 1985, ApJS, 57, 241.CrossRefADSGoogle Scholar
  6. Gurbatov, S.N., Saichev, A.I. & Shandarin, S.F. 1989, MNRAS, 236, 385. ref Hockney, R. W. & Eastwood, J.W. 1981, Computer Simulations using Particles, New York: McGraw-Hill.ADSzbMATHGoogle Scholar
  7. Kofman, L., Pogosyan, D. & Shandarin, S. 1990, MNRAS 242, 200.ADSGoogle Scholar
  8. Kofman, L., Pogosyan, D., Melott, A. & Shandarin, S. 1992, ApJ, 393, 437.CrossRefADSGoogle Scholar
  9. Matarrese, S., Lucchin, F., Moscardini, L., Saez, D. 1992, MNRAS, 259, 437.ADSGoogle Scholar
  10. Matarrese, S. & Terranova, D. 1995, preprint astro-ph/9511093.Google Scholar
  11. Nusser, A., Dekel, A., Bertschinger, E. & Blumenthal, G.R. 1991, ApJ, 379, 6.CrossRefADSGoogle Scholar
  12. Peebles, P.J.E. 1980, The Large-Scale Structure of the Universe Princeton: Princeton University Press.Google Scholar
  13. Sathyaprakash, B.S., Sahni, V., Munshi, D., Pogosyan, D. & Melott, A.L., 1995, MNRAS, 275, 463.ADSGoogle Scholar
  14. Thorne, K.S. 1995, in Proc. Snowmass 95 Summer Study on Particle and Nuclear Astrophysics and Cosmology, edited by Kolb E.W. & Peccei R., preprint gr-qc/9506086.Google Scholar
  15. Weinberg, S. 1972, Gravitation and Cosmology, New York: Wiley.Google Scholar
  16. Weinberg, D.H. & Gunn, J.E. 1990, MNRAS, 247, 260. ref Williams, B.G., Heavens, A.F., Peacock, J.A. & Shandarin, S.F. 1991, MNRAS, 250, 458.ADSGoogle Scholar
  17. Zel'dovich, Ya.B. 1970, A&A, 5, 84.ADSGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Sabino Matarrese
    • 1
  1. 1.Dipartimento di Fisica ‘Galileo Galilei’Università di PadovaPadovaItaly

Personalised recommendations