Advertisement

Galaxy formation

  • Joseph Silk
Part I The Universe at High-z
Part of the Lecture Notes in Physics book series (LNP, volume 470)

Abstract

The essential ingredient in understanding galaxy formation is star formation. Some tentative ideas are outlined that allow a simple, schematic derivation of the stellar initial mass function (IMF). The questions that I will address are: what determines the masses of stars and what determines the IMF? On a larger scale, an important clue to the nature of star formation in galactic disks arises from the observation that gas surface density in nearby spirals remains close to the critical value above which the gas is gravitationally unstable. Many of the global properties of galactic disks can be understood if star formation is self-regulated. A plausible physical argument is provided that self-regulation occurs and accounts for the global inefficiency of star formation in galactic disks. In contrast, there is no theoretical framework for developing a model for star formation in galactic spheroids. Major mergers that triggered major starbursts are thought to have played an important role, but the associated star formation physics is at best only schematically understood. One approach is to examine ultraluminous starbursts as possible prototypes for protoellipticals. The intracluster medium provides a natural reservoir for the debris from early phases of elliptical formation, and it has been inferred that the initial mass function in protoellipticals must have been top-heavy in order to explain the amount of intracluster iron. Implications include the inevitability of wind-driven mass loss, a systematic increase in mass-to-light ratio with luminosity as inferred from the fundamental plane, and Type II supernova yields both in the stellar populations of luminous ellipticals and in the intracluster gas.

Keywords

Star Formation Molecular Cloud Stellar Population Star Formation Rate Elliptical Galaxy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnaud, M., Rothenflug, R., Boulade, O., Vigroux, L. and Vangioni-Flam, E. 1992, A&A, 254, 49.ADSGoogle Scholar
  2. Bender, R. 1992, in The Stellar Populations of Galaxies, ed. B. Barbuy (Dordrecht: Kluwer), p. 267.Google Scholar
  3. Caselli, P. and Myers, P. C. 1995, ApJ, in pressGoogle Scholar
  4. Charlot, S., Ferrari, F., Mathews, G.J., and Silk, J., 1993, ApJ, 419, L57.CrossRefADSGoogle Scholar
  5. Charlot, S. & Silk, J. 1994, ApJ, 432, 453.CrossRefADSGoogle Scholar
  6. Chen, H., Myers, P. C., Ladd, E. F. and Wood, D. O. S. 1995, ApJ, 445, 377.CrossRefADSGoogle Scholar
  7. Doane, J.S., & Mathews, W.G. 1993, ApJ, 419, 573CrossRefADSGoogle Scholar
  8. Dressler, A. & Gunn, J. E. 1992, ApJS, 78, 1.CrossRefADSGoogle Scholar
  9. Forman, W., Jones, C., David, L., Franx, M., Makishima, K. & Ohashi, T. 1993, ApJ, 418, L55.CrossRefADSGoogle Scholar
  10. Franx, M. & Illingworth, G. 1990, ApJ, 359, L41.CrossRefADSGoogle Scholar
  11. Kauffmann, G., White, S. D. M. and Guiderdoni, B. 1993, MNRAS, 264, 201ADSGoogle Scholar
  12. Kennicutt, R. 1989, ApJ, 344, 685CrossRefADSGoogle Scholar
  13. Koo, B.-C. and McKee, C. F. 1992, ApJ, 388, 103CrossRefADSGoogle Scholar
  14. Lacey, C. and Silk, J. 1991, ApJ, 381, 14CrossRefADSGoogle Scholar
  15. Lacey, C., Guiderdoni, B., Silk, J. and Rocca-Volmerange, B. 1993, ApJ, 402, 15CrossRefADSGoogle Scholar
  16. Mamon, G. A. 1992, 1990, ApJ, 401, L3.CrossRefADSGoogle Scholar
  17. Myers, P. C. and Goodman, A. A. 1988, ApJ, 329, 392CrossRefADSGoogle Scholar
  18. Myers, P. C. and Fuller, G. 1992, ApJ, 396, 631CrossRefADSGoogle Scholar
  19. Ohashi, T. 1995, in Dark Matter, ed. S.S. Holt & C.L. Bennett (New York: A.I.P.), 255Google Scholar
  20. Puget, J.-L. et al. 1995, A&A, in press.Google Scholar
  21. Schweizer, F. and Seitzer, P. 1992, AJ, 104, 1039.CrossRefADSGoogle Scholar
  22. Shu, F. H., Adams, F. C. and Lizano, S. 1987, ARAA, 25, 23.ADSCrossRefGoogle Scholar
  23. Silk, J. 1995, ApJ, 438, L41CrossRefADSGoogle Scholar
  24. Tatematsu, K. et al. 1993, ApJ, 404, 643CrossRefADSGoogle Scholar
  25. Terebey, S., Shu, F. H. and Cassen, P. 1984, ApJ, 286, 529CrossRefADSGoogle Scholar
  26. Tsujimoto, T., Nomoto, K., Yoshii, Y., Hashimoto, M., Yanagida, S., & Thielemann, F.-K. 1995, MNRAS, in press.Google Scholar
  27. Wang, B. & Silk, J. 1994, ApJ, 427, 759CrossRefADSGoogle Scholar
  28. White, S. D. M., Navarro, J. M., Evrard, A. E. and Frenk, C. S. 1993, Nature, 366, 429CrossRefADSGoogle Scholar
  29. Worthey, G., Faber, S.M., & González, J.J. 1992, ApJ, 398, 69CrossRefADSGoogle Scholar
  30. Wyse, R. F. G. and Silk, J. 1989, ApJ, 339, 700CrossRefADSGoogle Scholar
  31. Zepf, S. and Silk, J. 1995, ApJ, submitted.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Joseph Silk
    • 1
    • 2
  1. 1.Departments of Astronomy and PhysicsUniversity of CaliforniaBerkeley
  2. 2.Center for Particle AstrophysicsUniversity of CaliforniaBerkeley

Personalised recommendations