Advertisement

W1+∞ minimal models and the hierarchy of the quantum hall effect

  • A. Cappelli
  • C. A. Trugenberger
  • G. R. Zemba
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 469)

Keywords

Minimal Model Incompressible Fluid Conformal Field Theory Effective Field Theory Quantum Hall Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    For a review see: R. A. Prange, S. M. Girvin, The Quantum Hall Effect, Springer Verlag, New York (1990).Google Scholar
  2. 2.
    R. B. Laughlin, Phys. Rev. Lett. 50 (1983) 1395; for a review see: R. B. Laughlin, Elementary Theory: the Incompressible Quantum Fluid, in [1].CrossRefADSGoogle Scholar
  3. 3.
    A. Cappelli, C. A. Trugenberger and G. R. Zemba, Nucl. Phys. 396 B (1993) 465; Phys. Lett. 306 B (1993) 100.CrossRefADSMathSciNetGoogle Scholar
  4. 4.
    A. Cappelli, G. V. Dunne, C. A. Trugenberger and G. R. Zemba, Nucl. Phys. 398 B (1993) 531; A. Cappelli, C. A. Trugenberger and G. R. Zemba, W 1+∞ Dynamics of Edge Excitations in the Quantum Hall Effect, cond-mat/9407095.CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    A. A. Belavin, A. M. Polyakov and A. B. Zamolodchikov, Nucl. Phys. B 241 (1984) 333; for a review see: P. Ginsparg, Applied Conformal Field Theory, in Fields, Strings and Critical Phenomena, Les Houches School 1988, E. Brezin and J. Zinn-Justin eds., North-Holland, Amsterdam (1990).CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    A. Cappelli, C. A. Trugenberger and G. R. Zemba, Phys. Rev. Lett. 72 (1994) 1902.CrossRefADSGoogle Scholar
  7. 7.
    V. Kac and A. Radul, Comm. Math. Phys. 157 (1993) 429; E. Frenkel, V. Kac, A. Radul and W. Wang, preprint hep-th/9405121.CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    A. Cappelli, C. A. Trugenberger and G. R. Zemba, Stable hierarchical Quantum Hall Fluids as W 1+∞ minimal models, hep-th/9502021, to appear in Nucl. Phys. B.Google Scholar
  9. 9.
    J. K. Jain, Adv. in Phys. 41 (1992) 105.CrossRefADSGoogle Scholar
  10. 10.
    X. G. Wen, Int. J. Mod. Phys. 6 B (1992) 1711; J. Fröhlich, U. M. Studer and E. Thiran, A Classification of Quantum Hall Fluids, preprint KUL-TF-94/35; see also Fröhlich's lectures in Schladming 1995.ADSGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • A. Cappelli
    • 1
  • C. A. Trugenberger
    • 2
  • G. R. Zemba
    • 3
  1. 1.I.N.F.N. and Dipartimento di FisicaFirenzeItaly
  2. 2.Département de Physique ThéoriqueUniv. de GenèveGenève 4Switzerland
  3. 3.I.N.F.N. and Dipartimento di Fisica TeoricaTorinoItaly

Personalised recommendations