Monodromy representation of the mapping class group Bn for the su2 Knizhnik-Zamolodchikov equation

  • Yassen S. Stanev
  • Ivan T. Todorov
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 469)


Quantum Group Conformal Block Braid Group Conformal Field Theory Mapping Class Group 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Bargmann and I.T. Todorov, Spaces of analytic functions on a complex cone as carries for the symmetric tensor representations of SO(n), J. Math. Phys. 18 (1977) 1141–1148.CrossRefADSMathSciNetzbMATHGoogle Scholar
  2. 2.
    A.A. Belavin, A.M. Polyakov and A.B. Zamolodchikov, Infinite conformal symmetry in two-dimensional quantum field theory, Nucl. Phys. B365 (1991) 98–120.CrossRefADSGoogle Scholar
  3. 3.
    N. N. Bogolubov, A.A. Logunov, A.I. Oksak and I.T. Todorov, General Principles of Quantum Field Theory, Kluwer Academic Publ., Dordrecht (1990).zbMATHGoogle Scholar
  4. 4.
    A. Cappelli, C. Itzykson and J. B. Zuber, The A-D-E classification of minimal and A 1(1) conformal invariant theories, Commun. Math. Phys. 113 (1987) 1–26.CrossRefADSMathSciNetzbMATHGoogle Scholar
  5. 5.
    P. Christie and R. Flume, The four point correlations of all primary fields of the d=2 conformally invariant SU(2) σ-model with a Wess-Zumino term, Nucl. Phys., B282 (1987) 466–494CrossRefADSGoogle Scholar
  6. 6.
    A. Coste and T. Gannon, Galois symmetry in RCFT, Phys. Lett. B323 (1994) 316–321.CrossRefADSMathSciNetGoogle Scholar
  7. 7.
    Vl.S. Dotsenko, V.A. Fateev, Conformal algebra and multipoint correlation functions in 2D statistical models, Nucl Phys. B240 (1984) 312–348.CrossRefADSMathSciNetGoogle Scholar
  8. 8.
    S. Doplicher, J.E. Roberts, Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics, Commun. Math. Phys. 131 (1991) 51–107.CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    V.G. Drinfeld, Hopf algebras and the quantum Yang-Baxter equation, Soviet Math. Dokl. 32 (1985) 254–258.Google Scholar
  10. 10.
    V.G. Drinfeld, Quantum groups, in Proc. 1986 I.C.M., Amer. Math. Soc. Berkeley, CA 1 (1987) 798–820Google Scholar
  11. 11.
    V.G. Drinfield, Quasihopf algebras and Knizhnik-Zamolodchikov equations, Alg. i Anal. 1:6 (1989) 114–148; English transl.: Leningrad Math. J. 1 (1990), 1419–1457.Google Scholar
  12. 12.
    F. Falceto, K. Gawedzki, Lattice Wess-Zumino-Witten model and quantum groups, J. Geom. Phys. 11 (1993) 251–279.CrossRefMathSciNetzbMATHADSGoogle Scholar
  13. 13.
    L.D. Faddeev, N.Yu. Reshetikhin and L.A. Takhtajan, Quantization of Lie groups and Lie algebras, (English transl. Leningrad Math. J. 1 (1990) 193–225) Alg. i Anal 1:1 (1989) 178–206.MathSciNetGoogle Scholar
  14. 14.
    D. Friedan and S. Shenker, The analytic geometry of two-dimensional conformal field theory, Nucl. Phys. B281 (1987) 509–545.CrossRefADSMathSciNetGoogle Scholar
  15. 15.
    J. Fröhlich and T. Kerler, Quantum Groups, Quantum Categories and Quantum Field Theory, Lecture Notes in Math. 1542 Springer, Berlin et al., (1993)zbMATHGoogle Scholar
  16. 16.
    J. Fuchs, A.N. Schellekens and C. Schweigert, Galois modular invariants of WZW models, Nucl. Phys. B437 (1995) 667–694.CrossRefADSMathSciNetGoogle Scholar
  17. 17.
    P. Furlan, L.K. Hadjiivanov and I.T. Todorov, The price for quantum group symmetry: chiral versus 2D qZNW model, Trieste-Vienna preprint (1995).Google Scholar
  18. 18.
    P. Furlan, G.M. Sotkov and I.T. Todorov, Two-dimensional conformal quantum field theory, Riv. Nuovo Cim. 12:6 (1989) 1–202.MathSciNetCrossRefGoogle Scholar
  19. 19.
    P. Furlan, Ya.S. Stanev and I.T. Todorov, Coherent state operators and n-point invariants for U q (sl(2)), Lett. Math. Phys. 22 (1991) 307–319.CrossRefMathSciNetzbMATHADSGoogle Scholar
  20. 20.
    A. Ch. Ganchev and V. B. Petkova, U q(sl (2)) invariant operators and minimal theory fusion matrices Phys. Lett. B233 (1989) 374–382.CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    T. Gannon, The classification of affine SU(3) modular invariant partition functions, Commun. Math. Phys. 161 (1994) 233–264.CrossRefADSMathSciNetzbMATHGoogle Scholar
  22. 22.
    K. Gawedzki, Geometry of Wess-Zumino-Witten model of conformal field theory, Nucl. Phys. B (Proc. Suppl.) 18B (1990) 78–91.ADSMathSciNetzbMATHGoogle Scholar
  23. 23.
    K. Gawedzki, Classical origin of quantum group symmetries in Wess-Zumino-Witten conformal field theory, Commun. Math. Phys. 139 (1991) 210–213.CrossRefMathSciNetADSGoogle Scholar
  24. 24.
    K. Gawedzki, A. Kupiainen, SU(2) Chern Simons theory of genus zero, Comm. Math. Phys. 135 (1991) 531–546.CrossRefADSMathSciNetzbMATHGoogle Scholar
  25. 25.
    P. Goddard, D. Olive (eds.), Kac-Moody and Virasoro Algebras, A reprint volume for Physicists, World Scientific, Singapore (1988).zbMATHGoogle Scholar
  26. 26.
    L.K. Hadjiivanov, R.R. Paunov and I.T. Todorov, Quantum group extended chiral p-models, Nucl. Phys. B356 (1991) 387–438.CrossRefADSMathSciNetGoogle Scholar
  27. 27.
    M. Jimbo, A q-difference analogue of U(g) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985) 63–69.CrossRefMathSciNetzbMATHADSGoogle Scholar
  28. 28.
    M. Jimbo, A q-analogue of U(gl(N+1)), Hecke algebras and the Yang-Baxter equation, Lett. Math. Phys. 11 (1986) 247–252.CrossRefMathSciNetzbMATHADSGoogle Scholar
  29. 29.
    V.G. Kac, Infinite Dimensional Lie Algebras, Third edition, Cambridge Univ. Press, Cambridge, (1990).zbMATHCrossRefGoogle Scholar
  30. 30.
    V.G. Knizhnik and A.B. Zamolodchikov, Current algebra And Wess-Zumino model in two dimensions, Nucl. Phys. B247 (1984) 83–103.CrossRefADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    R. de L. Kronig, Zur Neutrino Theorie des Lichtes III, Physica 2 (1935) 968–980.CrossRefzbMATHADSGoogle Scholar
  32. 32.
    G. Lusztig, Introduction to Quantum Groups, Progress in Mathematics v. 110 series eds. J. Oesterlé, A. Weinstein, Birkhäuser, Boston (1993).Google Scholar
  33. 33.
    G. Mack and V. Schomerus, Quasi Hopf quantum symmetry in quantum theory, Nucl. Phys. B370 (1992) 185–230.CrossRefADSMathSciNetGoogle Scholar
  34. 34.
    L. Michel, Ya.S. Stanev and I.T. Todorov, D-E classification of the local extensions of the su 2 current algebras (Theor. Math. Phys. 92 (1993) 1063), Teor Mat. Fiz. 92 (1992) 507–521.CrossRefMathSciNetGoogle Scholar
  35. 35.
    G. Moore and N. Seiberg, Classical and quantum conformal field theory, Commun. Math. Phys. 123 (1989) 177–254.CrossRefADSMathSciNetzbMATHGoogle Scholar
  36. 36.
    G. Moore and N. Seiberg, Lectures on RCFT, Superstrings 89, Proceedings of the Trieste 1989 Spring School, World Scientific Singapore (1990) 1–129.Google Scholar
  37. 37.
    K.-H. Rehren, Y.S. Stanev and I.T. Todorov, Characterizing invariants for local extensions of currents algebras, Hamburg-Vienna preprint DESY 94-164, ESI 132 (1994), hep-th/9409165, Commun. Math. Phys. (1995), to be published.Google Scholar
  38. 38.
    Ya.S. Stanev, Classification of the local extensions of the SU(3) chiral, current algebra, J. Math Phys. 36 (1995) 2053–2069.CrossRefADSMathSciNetzbMATHGoogle Scholar
  39. 39.
    Ya.S. Stanev, Classification of the local extensions of the SU(2)×SU(2) chiral current algebra, J. Math Phys. 36 (1995) 2070–2084.CrossRefADSMathSciNetzbMATHGoogle Scholar
  40. 40.
    Ya. S. Stanev, I.T. Todorov and L.K. Hadjiivanov, Braid invariant rational conformal models with a quantum group symmetry, Phys. Lett. B276 (1992) 87–94.CrossRefMathSciNetGoogle Scholar
  41. 41.
    Ya.S. Stanev, I.T. Todorov and L.K. Hadjiivanov, Braid invariant chiral conformal models with a quantum group symmetry, Quantum Symmetries, ed. by H.-D. Doebner, V.K. Dobrev, World Scientific Singapore (1993), p. 24–40.Google Scholar
  42. 42.
    Ya. S. Stanev and I.T. Todorov, On Schwarz problem for the \(\widehat{su}_2\) Knizhnik-Zamolodchikov equation, Lett. Math. Phys., ESI preprint 121 (1994)Google Scholar
  43. 43.
    W. Thirring, A soluble relativistic field theory, Ann. Phys. (N.Y.) 3 (1958) 91–112.CrossRefADSMathSciNetzbMATHGoogle Scholar
  44. 44.
    I.T. Todorov, Infinite Lie algebras in 2-dimensional conformal field theory, Talk in: International Conference on Differential Geomtric methods in Theoretical Physics (Shumen, Bulgaria, August 1984), in Differential Geometric Methods in Theoretical Physics, H.-D. Doebner and T.D. Palev, Eds., World Scientific Singapore (1986) pp. 297–347.Google Scholar
  45. 45.
    I.T. Todorov, Current algebra approach to conformal invariant 2-dimensional models, Phys. Lett. B153 (1985) 77–81.CrossRefADSMathSciNetGoogle Scholar
  46. 46.
    I.T. Todorov, What are we learning from 2-dimensional conformal models? in: Mathematical Physics Toward the 21st Century, R.N. Sen, A. Gersten, Eds., Ben Gurion University of the Negev Press, Beer Sheva (1994), pp. 160–176.Google Scholar
  47. 47.
    I.T. Todorov, Arithmetic features of rational conformal field theory, Ann. Inst. Poincaré, Bures-sur-Yvette preprint IHES/P/95/10.Google Scholar
  48. 48.
    I.T. Todorov and Ya. S. Stanev, Chiral Current Algebras and 2-Dimensional Conformal Models, Troisième Cycle de la Physique en Suisse Romande, Lausanne (1992).Google Scholar
  49. 49.
    S. Tomonaga, Remarks on Bloch's method of sound waves applied to manyfermion problems, Prog. Theor. Phys. 5 (1950) 544–569.CrossRefADSMathSciNetGoogle Scholar
  50. 50.
    A. Tsuchiya and Y. Kanie, Vertex operators in the conformal field theory on P 1 and monodromy representations of the braid group, Lett. Math. Phys. 13 (1987) 303–312, Conformal field theory and solvable lattice modells, Advanced Studies in Pure Mathematics 16 (1988) 297–372.CrossRefMathSciNetzbMATHADSGoogle Scholar
  51. 51.
    E. Witten, Non-Abelian bosonization in two dimensions, Commun. Math. Phys. 92 (1984) 455–472.CrossRefADSMathSciNetzbMATHGoogle Scholar
  52. 52.
    A.B. Zamolodchikov and V.A. Fateev, Operator algebra and correlation functions in two-dimensional SU(2)xSU(2) chiral Wess-Zumino model, Yad.Fiz. 43 (1986) 1031–1044; transl.: Sov. J. Nucl. Phys. 43 (1986), 657–664.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Yassen S. Stanev
    • 1
  • Ivan T. Todorov
    • 2
  1. 1.Dipartimento di FisicaUniversita di RomaRomaItaly
  2. 2.Institute for Nuclear ResearchSofiaBulgaria

Personalised recommendations