Some algebraic and analytic structures in integrable systems

  • Nicolai Reshetikhin
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 469)


Hopf Algebra Poisson Bracket Spin Chain Poisson Algebra Poisson Manifold 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Drinfeld, Quantum groups, Proceedings ICM-86, (Berkeley), vol. 1, 798–820.Google Scholar
  2. 2.
    A. Weinstein, Local structure of Poisson manifolds, J. Diff. Geom., 18 3 (1983), 523–557.MathSciNetzbMATHGoogle Scholar
  3. 3.
    M. Semenov-Tian-Shanskii, Dressing transformation and Poisson group actions, Pub. Res. Inst. Math. Sci. Kyoto Univ. 21, no. 6 (1985), 1237–1260.CrossRefGoogle Scholar
  4. 4.
    A. Reiman, M. Semenov-Tian-Shanskii, Group theoretical methods in Integrable systems, in: Integrable systems VII (V. Arnold and S. Novikov, eds.) Encyclopaedia of Math Sciences v. 16, Springer 1994.Google Scholar
  5. 5.
    M. Semenov-Tian-Shanskii, Lectures on r-matrices, Poisson-Lie groups, and integrable systems, in: Lectures on Integrable Systems (in memory of J.L. Verdier, O. Babelon, P. Cartier, Y. Kossmann-Schwarzbach, eds), World Scientific, 1994, pp. 269–318.Google Scholar
  6. 6.
    V. Kac, Infinite dimensional Lie algebras, Birkhäuser, Boston, 1983.zbMATHGoogle Scholar
  7. 7.
    P. Kulish, E. Sklyanin, Integrable Quantum Field Teories, Lecture Notes in Physics, 151 61–119 Berlin: Springer-Verlag, 1982.Google Scholar
  8. 8.
    A. Belavin, V. Drinfeld, About solutions to the classical Yang-Baxter equations for simple Lie algebras, Funct. Anal. and Its Appl. 16, 3 (1982), 1–29.MathSciNetGoogle Scholar
  9. 9.
    E. Sklyanin, On some algebraic structures related to the Yang-Baxter equation, Funct. Anal. and Its Appl., 16, 4 (1982), 27–34.MathSciNetGoogle Scholar
  10. 10.
    L. Faddeev and L. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, 1987.Google Scholar
  11. 11.
    E. Sklyanin, On the Poisson structure of the periodic clasical XYZ chain, J. Sov. Math. 46 (1989) 1664.CrossRefMathSciNetGoogle Scholar
  12. 12.
    A. Veselov, Integrable maps, Uspekhi Mat. Nauk., 46: 5 (1991), 3–45.MathSciNetzbMATHGoogle Scholar
  13. 13.
    A. Bobenko, N. Kutz and U. Pinkal, The discrete quantum pendulum, Physics Letters A 177 (1993), 399–404.CrossRefADSMathSciNetGoogle Scholar
  14. 14.
    L. Faddeev and A. Volkov, Quantum inverse scattering method on a space-time lattice, Theor. and Math, Phys., 92 (1992) 207–214.MathSciNetGoogle Scholar
  15. 15.
    V. Bazhanov, A. Bobenko and N. Reshetikhin, Quantum discrete sine-Gordon model at roots of 1: integrable quantum system on the integrable classical blackground, Comm. Math. Phys., to be published.Google Scholar
  16. 16.
    R. Kashaev and N. Reshetikhin, Affine Toda field theory as a 3-dimensional integrable system, preprint, July 1995.Google Scholar
  17. 17.
    N. Reshetikhin, Integarble discrete systems lectures given at “Enrico Fermi school of physics”, Varenna, July 1994.Google Scholar
  18. 18.
    P. Deift, Li L.C., Tomei C., Loop groups, integrable systems, and rank 2 extensions., Memoirs of the AMS, 479 (1991).Google Scholar
  19. 19.
    M. Guttzwiller, Chaos in Classical and Quantum Mechanics, Springer-Verlag, 1990.Google Scholar
  20. 20.
    S. Montgomery, Hopf algebras and their actions on rings, Regional Conference Series in Mathematics, n82, 1993.Google Scholar
  21. 21.
    L. Faddeev, N. Reshetikhin and L. Takhtajan, Quantization of Lie groups and Lie algebras, Algebra and Analysis, 1 (1989) 178–201.MathSciNetGoogle Scholar
  22. 22.
    R. Baxter Exactly solved models in statistical mechanics, Graduate Texts in Math., 60, Springer-Verlag, 1989, 2nd edition.Google Scholar
  23. 23.
    L. Faddeev, Integrable models in 1+1-dimensional quantum field theory. Pages 563–608, in: Recent Advances in Field Theory and Statistical Mechanics, J.B. Zuber and R. Stora, editors, Elsevier, Science Publishers, Amsterdam, 1984.Google Scholar
  24. 24.
    N. Bogolubov, A. Izergin and V. Korepin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press, 1993.Google Scholar
  25. 25.
    V. Chari and A. Pressley, A guide to quantum groups, Cambridge University Press, 1994.Google Scholar
  26. 26.
    C. Izykson and J.-B. Zuber, Quantium Field Theory, McGraw Hill, New York (1980).Google Scholar
  27. 27.
    J. Glimm and A. Jaffe, Quantum Physics, Springer, New York (1981).zbMATHGoogle Scholar
  28. 28.
    C. Itzycson and J.-M. Drouffe, Statistical Field Theory, Cambridge Monographs on Mathematical Physics.Google Scholar
  29. 29.
    R. Hirota, Discrete analogue od a generalized Toda Equation, J. Phys. Soc. Japan, 50 (1981) 3785.CrossRefMathSciNetADSGoogle Scholar
  30. 30.
    I. Frenkel and N. Reshetikhin Quantum Affine Algebras and Holonomic Difference Equations, Commun. Math. Phys. 146 (1992) 1–60.CrossRefADSMathSciNetzbMATHGoogle Scholar
  31. 31.
    M. Jimbo and T. Miwa, Algebraic Analysis of Solvable Lattice Models, Publications of RIMS, Infinite Analysis Lecture Notes, No 8, Kyoto 1994.Google Scholar
  32. 32.
    J. Moser and A. Veselov Discrete versions of some classical integrable systems and factorization of matrix polynomials, Preprint, ETH, Zurich, 1989.Google Scholar
  33. 33.
    P. Eting of and D. Kazhdan, Quantization of Lie bialgebras preprint, 1995.Google Scholar
  34. 34.
    B. Jurco and M. Schleiker, Quantized Lax equations and their solutions, preprint 1995.Google Scholar
  35. 35.
    A. Weinstein, Deformation quantization, it Séminaire Bourbaki, 46 ème année, 1993-94, no. 789.Google Scholar
  36. 36.
    M. Gaudin, La function d'onde de Bethe, Masson: Paris 1983Google Scholar
  37. 37.
    On exceptional solutions of the Bethe ansatz equations Theor. Mat. Phys. 69 (1987) 1071.Google Scholar
  38. 38.
    C. Destry and J. Lowenstein, Nucl. Physics 205 (1982), 2985.Google Scholar
  39. 39.
    E. H. Lieb and F. Y. Wu in: Phase Transitions and Critical Phenomena, Vol. 1, eds. C. Domb, M. S. Green, Academic Press, London 1972.Google Scholar
  40. 40.
    C.N. Yang and C.P. Yang Thermodynamics of a one-dimensional system of bosons with repulsive delta-function interactions, J. Math. Phys., 10 (1967) 1115–1122.CrossRefADSGoogle Scholar
  41. 41.
    M. Takahashi and M. Suzuki, One-dimensional anisotropic model at finite temperature, Progress of Theoretical Physics 48, 6B (1972), 2187–2209.CrossRefADSGoogle Scholar
  42. 42.
    M. Gaudin, Thermodynamics of the Heisenberg-Ising Ring for Δ>-1, Physical Review Letters 26 21 (1971) 1301–1305.CrossRefADSGoogle Scholar
  43. 43.
    I. Krichever, Methos of algebraic geometry in the theory of nonlinear equations, Russian Math. Surv. 32, 6 (1977) 185–213.CrossRefzbMATHADSGoogle Scholar
  44. 44.
    E. Stern Semi-Infinite Wedges and Vertex Operators, International Mathematiccs Research Notices, (1995) 201–220.Google Scholar
  45. 45.
    M. Kashiwara, T. Miwa and E. Stern Decomposition of q-deformed Fock spaces, preprint 1995.Google Scholar
  46. 46.
    A. Kuniba, T. Nakanishi and J. Suzuki, Functional Relations in Solvable Lattice Models, part I and II, preprints 1993.Google Scholar
  47. 47.
    A. Klumper and P. Pierce, Conformal weights of RSOS lattice models and their fusion hierarchies, Physica A 183 (1992) 304–350CrossRefADSMathSciNetGoogle Scholar
  48. 48.
    V. Bazhanov, S. Lukianov and A. Zamolodchikov, Integrable Structure of Conformal Field Theory, Quantum KdV Theory and Thermodynamical Bethe Anstz, preprint 1994.Google Scholar
  49. 49.
    M. Adler On the trace functional for formal pseudodifferential operators and the symplectic structure for the KdV type equations, Invent. Math. 50 (1979) 267–317.Google Scholar
  50. 50.
    B. Kostant The solution to a generalized periodic Toda lattice and representation theory, Adv. Math. 34 (1979) 195–338.CrossRefMathSciNetzbMATHGoogle Scholar
  51. 51.
    N. Reshetikhin Quasitriangle Hopf algebras and invariants of tangles, Algebra and Analysis 1 (1989) 491–513.MathSciNetGoogle Scholar
  52. 52.
    P. Kulish, N. Reshetikhin and E. Sklianin Yang-Baxter equation and representation theory, Lett. Math. Phys. 5 (1981) 393–403.CrossRefMathSciNetzbMATHADSGoogle Scholar
  53. 53.
    A. Kirillov and N. Reshetikhin Exact solution of the integrable XXZ Heisenberg model with arbitrary spin, J. Physics A 20 (1987) 1565–1585.CrossRefADSMathSciNetGoogle Scholar
  54. 54.
    V. Bazhanov and N. Reshetikhin Restricted solid-on solid models connected with simply-laced algebras and conformal field theory. J. Phys. A 23 (1990) 1477–1492.CrossRefADSMathSciNetzbMATHGoogle Scholar
  55. 55.
    L. Faddev and L. Takhtajan, The quantum inverse scattering method of the inverse problem and the heisenberg XYZ model, Russian Math Surveys 34 5 (1979) 11–68.CrossRefADSGoogle Scholar
  56. 56.
    E. Witten Topological Quantum Field Theory, Comm. Math. Phys. 117 (1988) 353–386.CrossRefADSMathSciNetzbMATHGoogle Scholar
  57. 57.
    E. Frenkel and N. reshetikhin Quantum Affine Algebras and deformations of the Virasoro and W-algebras, preprint 1995.Google Scholar
  58. 58.
    J. Shiraishi, H. Kubo, H. Awata and S. Odake A quantum deformation of the Virasoro algebra and Macdonald symmetric functions, preprint 1995.Google Scholar
  59. 59.
    B. Feigin and E. Frenkel Quantum W-algebras and elliptic algebras, preprint 1995.Google Scholar
  60. 60.
    S. Kharchev, S. Khoroshkin and D. Lebedev Intertwining operators and Hirota bilinear equations, preprint 1995.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • Nicolai Reshetikhin
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations