Introduction to integrable models of statistical physics

  • H. Grosse
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 469)


Integrable Model Ising Model Quantum Group Vertex Operator Bethe Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Grosse, Models in Statistical Physics and Quantum Field Theory, Springer, 1988.Google Scholar
  2. 2.
    D.C. Mattis, The Many-Body Problem, World Scientific, 1993.Google Scholar
  3. 3.
    H. Grosse, An Introduction to Integrable Models and Conformal Field Theory, Proc. of the XXIX Winter Schladming School, Springer 1991, eds. H. Mitter and W. Schweiger.Google Scholar
  4. 4.
    H. Grosse, E. Langmann and E. Raschhofer, The Luttinger-Schwinger Model, preprint, Vienna 1995.Google Scholar
  5. 5.
    L. Faddeev, Quantum Completely Integrable Models in Field Theory, Les Houches Lecture, 1982.Google Scholar
  6. 6.
    J. Fröhlich, Statistics of Fields, the Yang-baxter Equation, and the Theory of Understand Links, Cargése Lecture 1987.Google Scholar
  7. 7.
    H. Grosse, S. Pallua, P. Prester and E. Raschhofer, Journ. Phys. A: Math. 27 (1994) 4761.CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    A.Y. Alekseev, H. Grosse and V. Schomerus, Combinatorial Quantization of the Hamiltonian Chern-Simons Theory. I and II, Commun. Math. Phys., to be published 1995.Google Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • H. Grosse
    • 1
  1. 1.Institut für Theoretische PhysikUniversität WienWienAustria

Personalised recommendations