Advertisement

Large new applications of Bethe Ansatz

  • L. D. Faddeev
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 469)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Lieb, D. Mattis, Mathematical Physics in One Dimension, Academic Press, New York, N-Y (1966).Google Scholar
  2. 2.
    R. Baxter, Exactly Solvable Models in Statistical Mechanics, Academic Press, New York, N-Y (1982).Google Scholar
  3. 3.
    V. Korepin, N. Bogolyubov, A. Izergin, Quantum Inverse Scattering Method and Correlation Functions, Cambridge University Press (1993).Google Scholar
  4. 4.
    H. Bethe, Z. fur Physik 71 (1931) 205.CrossRefADSzbMATHGoogle Scholar
  5. 5.
    L. Faddeev, G. Korchemsky, Phys. Lett B 342 (1995) 311.CrossRefADSGoogle Scholar
  6. 6.
    L. Faddeev, O. Tirkkonen, Connection of the Liouville Model and XXZ spin chain, Preprint HU-TFT-15 (1995), HEP-TH (1995).Google Scholar
  7. 7.
    L. Faddeev, R. Kashaev, Comm. Math. Phys., 169, (1995) 181.CrossRefADSMathSciNetzbMATHGoogle Scholar
  8. 8.
    L. Faddeev, Int. J. Math. Phys. 10 A (1995) 1845.CrossRefADSMathSciNetGoogle Scholar
  9. 9.
    V. Drinfeld, Quantum Groups in Proc. ICM-86 at Berkeley, 1, 798, AMS (1987).Google Scholar
  10. 10.
    V. Tarasov, L. Takhtajan, L. Faddeev, Theor. Math. Phys. 57 (1983) 163.CrossRefMathSciNetGoogle Scholar
  11. 11.
    E. Sklyanin Functional Bethe Ansatz, in Integrable and superintegrable systems, 8–33, World Scientific, (1990); Quantum Inverse Scattering Method. Selected Topics, in Quantum Groups and Quantum Integrable Systems (Nankai Lectures in Mathematical Physics, 63–97, World Scientific, (1992).Google Scholar
  12. 12.
    L. Lipatov, in Perturbative QCD 411–489, ed. A. Mueller, World Scientific, Singapore, (1989).Google Scholar
  13. 13.
    L. Lipatov, Phys. Lett. 251 (1990) 284; Phys. Lett. 309 (1993) 394CrossRefGoogle Scholar
  14. 14.
    M. Braun, The interaction of reggeized gluons and Lipatov's hard pomeron Lectures at University of Santiago de Compostela, Spain (1994).Google Scholar
  15. 15.
    L. Lipatov, High-energy asymptotics of multi-color QCD and exactly solvable lattice models, Padowa preprint DFPD/93/TH/70 (1993).Google Scholar
  16. 16.
    L. Lipatov, High-energy asymptotics of multi-color QCD and exactly solvable lattice models, ZhETF Lett. 59, No 9 (1994) 571 (in Russian)Google Scholar
  17. 17.
    P. Kulish, N. Reshetikhin, E. Sklyanin, Lett. Math. Phys. 5, (1981) 393.CrossRefMathSciNetzbMATHADSGoogle Scholar
  18. 18.
    A. Polyakov, Phys. Lett. 103B (1981) 207.ADSMathSciNetGoogle Scholar
  19. 19.
    E. Sklyanin, L. Takhtajan, L. Faddeev, Theor. Math. Phys. 40 (1980) 688.CrossRefzbMATHGoogle Scholar
  20. 20.
    J-L. Gervais, A. Neveu, Nucl. Phys. 199B (1982) 50; Nucl. Phys. 257B (1985) 59.MathSciNetADSGoogle Scholar
  21. 21.
    T. Curtright, C. Thorn, Phys. Rev. Lett. 48 (1989) 1309.CrossRefADSMathSciNetGoogle Scholar
  22. 22.
    M. Karowsky, Nucl. Phys. 300B (1988) 473.CrossRefADSGoogle Scholar
  23. 23.
    J. Cardy, Nucl. Phys. 270B (1986) 746.MathSciNetGoogle Scholar
  24. 24.
    A. Belavin, A. Polyakov, A. Zamolodchikov, Nucl. Phys. 241B (1984) 333.CrossRefADSMathSciNetGoogle Scholar
  25. 25.
    D. Friedan, Z. Oin, S. Shenker, Phys. Lev. Lett. 52 (1984) 1575.CrossRefADSGoogle Scholar
  26. 26.
    P. Wiegman, A. Zabrodin, Nucl. Phys. 422B (1994) 495.CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • L. D. Faddeev
    • 1
    • 2
  1. 1.St. Petersburgh Branch of Steklov Mathematical InstituteSt. PetersburgRussia
  2. 2.Research Institute for Theoretical PhysicsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations