Comments about higgs fields, noncommutative geometry, and the standard model

  • G. Cammarata
  • R. Coquereaux
Conference paper
Part of the Lecture Notes in Physics book series (LNP, volume 469)


Yukawa Coupling Gauge Field Noncommutative Geometry Higgs Field Differential Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Connes, J. Lott, Nucl. Phys. B 18 B (1990) 29–47.ADSMathSciNetGoogle Scholar
  2. 2.
    A. Connes, Les Houches Lectures (1992).Google Scholar
  3. 3.
    A. Connes, Noncommutative Geometry, Academic Press (1994)Google Scholar
  4. 4.
    R. Coquereaux, G. Esposito-Farese, G. Vaillant, Higgs Fields as Yang-Mills Fields and Discrete symmetries. Preprint Marseille (1990) CPT-90-2407. Nucl. Phys B353, 689 (1991).CrossRefADSMathSciNetGoogle Scholar
  5. 5.
    R. Coquereaux, R. Haussling, F. Scheck, Algebraic connections on parallel universes. CPT-93/PE 2947. Int. Jour. of Mod. Phys. A, Vol 10, No 1 (1995) 89–98.CrossRefADSMathSciNetzbMATHGoogle Scholar
  6. 6.
    R. Coquereaux, G. Esposito-Farese, F. Scheck, Non Commutative Geometry and Graded Algebras in Electroweak Interactions IHES-preprint, CPT-91/P.2464, Int. J. Mod. Phys. A, Vol 7, No 26 (1992) 6555–6593.CrossRefADSMathSciNetzbMATHGoogle Scholar
  7. 7.
    R. Coquereaux, Higgs fields and superconnections in Differential Geometric Methods in Theoretical Physics, C. Bartocci et al (eds), Proceedings of the Rapallo Conference (1990), 1991. Lecture Notes in Physics 375. Springer-Verlag.Google Scholar
  8. 8.
    R. Coquereaux, Non Commutative Geometry: A physicist's brief survey, Proc. of XXIIX Karpacz Winter School of Theoretical Physics: “Fields and Geometry” J. of Geometry and Physics, 11, (1993) 307–324.ADSMathSciNetzbMATHGoogle Scholar
  9. 9.
    M. Dubois-Violette, Dérivations et calcul différentiel non-commutatif. Preprint Orsay 1987, C.R. Acad. Sci. Paris 307, I, 403–408, (1988).MathSciNetzbMATHGoogle Scholar
  10. 10.
    M. Duboix-Violette, R. Kerner, J. Madore, Non-commutative differential geometry of matrix algebras (Orsay Preprint 1988). SLAC-PPF 88-45, J. Math. Phys. 31, 316–322, (1990).CrossRefADSMathSciNetGoogle Scholar
  11. 11.
    M. Dubois-Violette, R. Kerner, J. Madore, Non-commutative differential geometry and new models of gauge theory (Orsay Preprint 1988). SLAC-PPF 88-49, J. Math. Phys., 323–329 (1990).Google Scholar
  12. 12.
    M. Dubois-Violette, R. Kerner, J. Madore, Classical bosons in a non-commutative geometry (1988). Class. Quantum Grav. 6, 1709–1724 (1989).CrossRefADSMathSciNetGoogle Scholar
  13. 13.
    M. Dubois-Violette, Non-commutative differential geometry, quantum mechanics and gauge theory, in Differential Geometric Methods in Theoretical Physics, C. Bartocci et al, (eds), Proceedings of the Rapallo Conference (1990), 1991 Springer-Verlag.Google Scholar
  14. 14.
    M. Marcu, J. Math. Phys. 21 (1980) 1277.CrossRefADSMathSciNetzbMATHGoogle Scholar
  15. 15.
    W. Kalau, N.A. Papadopoulos, J. Plass, J.-M. Warzecha, MZ-TH/93-28.Google Scholar
  16. 16.
    D. Kastler Lectures on Alain Connes' non commutative geometry and applications to fundamental interactions, Proceedings of the First Caribbean Spring School of Mathematics and Theoretical Physics, World Scientific, to appear (1995).Google Scholar
  17. 17.
    D. Kastler, T. Schucker, A detailed account of Alain Connes' version of the SM, hep-th/9501077.Google Scholar
  18. 18.
    T. Schucker, B. Iochum, Yang-Mills-Higgs versus Connes-Lott, hep-th/9501142. to appear in Comm. Math. Phys.Google Scholar
  19. 19.
    D. Kastler D. Testard, Quantum forms of tensor products, Comm. Math. Phys. 155 (1993) 135CrossRefADSMathSciNetzbMATHGoogle Scholar
  20. 20.
    R. Haussling, N. A. Papadopoulos, F. Scheck, Phys. Lett. B303 (1993) 265.CrossRefADSMathSciNetGoogle Scholar
  21. 21.
    N.A. Papadopoulos, J. Plass and F. Scheck. Models of electroweak interactions in non-commutative geometry: A comparison (1993). MZ-TH/93-26.Google Scholar
  22. 22.
    A.H. Chamseddine, G. Felder and J. Fröhlich, Grand Unification in non commutative geometry. Nucl. Phys. B395 (1993) 672–698.CrossRefADSGoogle Scholar
  23. 23.
    J.C. Varilly and J.M. Gracia-Bondia, Connes' non commutative geometry and the standard model, J. Geom. and Physics 12 (1993) 223.CrossRefADSMathSciNetzbMATHGoogle Scholar
  24. 24.
    E. Alvarez, J.M. Gracia-Bondia and C.P. Martin, A renormalization group analysis of the NCG constraints, hep-th/9401099.Google Scholar
  25. 25.
    J.M. Gracia-Bondia, Connes' interpretation of the SM and massive neutrinos hep-th/9502120.Google Scholar
  26. 26.
    V. Matthai, D. Quillen, Topology 25 (1985) 85.CrossRefGoogle Scholar
  27. 27.
    D. Fairlie, Phys. Lett. B82 (1979) 97.CrossRefADSGoogle Scholar
  28. 28.
    Y. Ne'eman, Phys. Lett. B81 (1979) 190.CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1996

Authors and Affiliations

  • G. Cammarata
    • 1
  • R. Coquereaux
    • 1
  1. 1.Centre de Physique Théorique-CNRS-LuminyMarseille Cedex 9France

Personalised recommendations