Skip to main content

Formation of thin current sheets in magnetospheres

  • Part VII Astrophysical and Geophysical Flows
  • Conference paper
  • First Online:
  • 149 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 462))

Abstract

The formation of thin current sheets is believed to play an important role in many space and astrophysical plasma phenomena, including transport and conversion of magnetic to kinetic energy in stellar and magnetospheric activity. The Earth's magnetosphere is an appropriate environment for the in-situ study of these phenomena. Thin current sheets form typically when a smooth current sheet is perturbed by external forces. The result is a double structure with a thin current sheet embedded in a broader one. A simple example leading to a double structure is analyzed. Resistive instabilities typically involve thin current sheets also. When the Earth's magnetapause becomes resistivelly unstable due to localized resistive “patches”, a fast unstable dynamical process occurs which leads to magnetic opening and complicated 3D magnetic structures involving thin current sheets. As magnetic flux is transferred to the magnetotail the plasma sheet compresses and the tail current density increases. However, a smoothly distributed current cannot explain the observed signatures of a resistive (or a corresponding kinetic) instability. Recently, observations have indicated that a double structure forms. That processes can be recovered in a simple model based on slow adiabatic evolutions, and the mechanism can be identified. Thin current sheet forming in the magnetotail before onset of the tail instability has played the role of a “missing link” in the theory of magnetospheric activity.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Birk, G. T., Otto, A. (1991): “The resistive tearing instability for generalized resistivity models: applications”, Phys. Fluids B 3, pp. 1746

    Article  ADS  Google Scholar 

  • Birn, J., Schindler, K. (1983): “Self-consistent theory of three-dimensional convection in the geomagnetic tail”, J. Geophys. Res., 88, pp. 6969

    Article  ADS  Google Scholar 

  • Birn, J., Schindler, K. (1988): “Large scale instabilities and dynamics of the magnetotail plasma sheet”, in Modelling Magnetospheric Plasma, edited by T. E. Moore, J. H. Waite Geophys. Monogr., 44, AGU (Washington D.C.) pp. 251

    Google Scholar 

  • Biskamp, D. (1993): “Nonlinear magnetohydrodynamics”, in Cambridge Monographs on Plasma Physics 1, edited by W. Grossman, D. Papadopoulos, R. Sagdeev, K. Schindler, Cambridge Univ. Press

    Google Scholar 

  • Furth, H. P., Killeen, J., Rosenbluth, M. N. (1963): “Finite resistivity instabilities of a sheet pinch”, Phys. Fluids, 6, pp. 459

    Article  ADS  Google Scholar 

  • Hahm, T. S., Kulsrud, R. M. (1982): “Forced magnetical reconnection”, Physica Scripta, 2 (2), pp. 525

    Google Scholar 

  • Harris, E. G. (1962): “On a plasma sheath separating regions of oppositely directed magnetic fields”, Nuovo Cimento, 23, pp. 115

    Article  MATH  Google Scholar 

  • Hesse, M. (1995): “private communication”

    Google Scholar 

  • Lee, L. C., Zhang, L., Choe, G. S., Cai, H. J. (1994): “Formation of a very thin current sheet in the near-earth magnetotail and the onset of substorms”, submitted to Geophys. Res. Letters

    Google Scholar 

  • Otto, A., Schindler, K., Birn, J. (1990): “Quantitative study on the nonlinear formation and acceleration of plasmoids in the Earth's magnetotail”, J. Geophys. Res., 95, pp. 15023

    Article  ADS  Google Scholar 

  • Otto, A. (1995): “Forced three-dimensional magnetic reconnection due to linkage of magnetic flux tubes”, J. Geophys. Res., in press

    Google Scholar 

  • Parker, E. N. (1963): “The solar flare phenomenon and the theory of reconnection and annihilation of magnetic fields”, Astrophys. J., Suppl. Ser. 8, pp. 177

    ADS  Google Scholar 

  • Parker, E. N. (1972): “Topological dissipation and the small scale fields in turbulent gases”, Astrophys. J. 174, pp. 499

    Article  ADS  Google Scholar 

  • Pellat, R., Coroniti, F. V., Pritchett, P. L. (1991): “Does the ion tearing mode exist?”, Geophys. Res. Lett., 18, pp. 143.

    Article  ADS  Google Scholar 

  • Petschek, H. E. (1964): “Magnetic field annihilation”, in AAS/NASA Symposium on the Physics of Solar Flares, edited by W. N. Hess (NASA, Washington, D. C.), pp. 425

    Google Scholar 

  • Pouquet, A. (1978): “On two-dimensional magnetohydrodynamic turbulence”, J. Fluid Mech. 88, pp. 1

    Article  ADS  MATH  Google Scholar 

  • Priest, E. R. (1982): “Solar magnetohydrodynamics”, D. Reidel, Hingham, Mass.

    Google Scholar 

  • Pulkkinen, T. I., Baker, D. N., Pellinen, R. J., Büchner, J., Koskinen, H. E. J., Lopez, R. E., Dyson, R. L., Frank, L. A. (1992): “Particle scattering and current sheet stability in the geomagnetic tail during the substorm growth phase”, J. Geophys. Res., 97, pp. 19283

    Article  ADS  Google Scholar 

  • Schindler, K. (1974): “A theory of the substorm mechanism”, J. Geophys. Res., 79, pp. 2803

    Article  ADS  Google Scholar 

  • Schindler, K., Birn, J. (1982): “Self-consistent theory of time-dependent convection in the Earth's magnetotail”, J. Geophys. Res., 87, pp. 2263

    Article  ADS  Google Scholar 

  • Schindler, K., Birn, J. (1993): “On the cause of thin current sheets in the near-Earth magnetotail and their possible significance for magnetospheric substorms”, J. Geophys. Res., 98 (15), pp. 477

    Google Scholar 

  • Sergeev, V. A., Tanskanen, P., Mursula, K., Korth, A., Elphic, R. C. (1990): “Current sheet thickness in the near-Earth plasma sheet during substorm growth phase”, J. Geophys. Res., 95, pp. 3819

    Article  ADS  Google Scholar 

  • Sweet, P. A. (1958): “The production of high energy particles in solar flares”, Nuovo Cimento, Suppl. 8, Ser. X, pp. 118

    Google Scholar 

  • Voge, A., Otto, A., Schindler, K. (1994): “Nonlinear current-sheet formation in ideal plasmas”, J. Geophys. Res., 99, pp. 21241

    Article  ADS  Google Scholar 

  • Wiegelmann, T., Schindler, K. (1995): “Formation of thin current sheets in a quasistatic magnetotail model”, submitted to Geophys. Res. Letters

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Maurice Meneguzzi Annick Pouquet Pierre-Louis Sulem

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schindler, K. (1995). Formation of thin current sheets in magnetospheres. In: Meneguzzi, M., Pouquet, A., Sulem, PL. (eds) Small-Scale Structures in Three-Dimensional Hydrodynamic and Magnetohydrodynamic Turbulence. Lecture Notes in Physics, vol 462. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102435

Download citation

  • DOI: https://doi.org/10.1007/BFb0102435

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-60486-0

  • Online ISBN: 978-3-540-47675-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics