Skip to main content

Gas phase biosensors

  • Chapter
  • First Online:
Downstream Processing Biosurfactants Carotenoids

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 53))

  • 164 Accesses

Abstract

The last two decades have shown an enormous interest and research efforts on the use of biological activity in analysis, mainly for direct or on line monitoring of chemical compounds. The core work has emphasised on the detection of analytes in aqueous solutions. However, the rapid progress of enzymatic applications on low water environments in recent years is considered to be of high potential for the development of biosensors applicable to compounds present in the gas phase. This review describes the principles that underline the operation of gas phase biosensors and the potential areas of impact in the forthcoming years with examples that illustrate its applicability. A distinct advantage is identified for the direct interaction of gaseous compounds with biological targets that originate a detectable and measurable signal applicable at the field or site of interest, as opposed to preparative steps like the solubilization of volatiles in water, sampling and transportation to the laboratory for further analysis. This is illustrated by enzyme systems based on dehydrated alcohol oxidase for the determination of ethanol or formaldehyde vapors. Current knowledge on the phenomena that control the performance of gas phase enzymatic conversions is also discussed.

The two approaches that have predominated for gas phase biosensors are covered, one based on a biochemical reaction mediated by enzymes or whole cells, and other based on the formation of complexes of biological molecules via adsorption, an alternative in which the use of antibodies has been specially fruitful when coated on piezolectric crystals. The later is unique for environmental applications as in the case of pesticides. Other areas of impact include food related applications and the control of bio-processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luong JHT, Mulchandani AM, Guilbault GG (1988) TIBTECH 6:310–316.

    CAS  Google Scholar 

  2. Hall EAH (1992) Overview of biosensors. In: Edelman PG, Wang J (eds) Biosensors and chemical sensors. ACS Symposium Series 487, American Chemical Society, Washington, DC

    Google Scholar 

  3. Clark LC, Lyons C (1962) Arin NY Acad Sci 102: 29–45

    Article  CAS  Google Scholar 

  4. Brodelius PE (1991) Curr Op Biotechnol 2: 23–29

    Article  CAS  Google Scholar 

  5. Zaks A, Klibanov AM (1984) Science 224: 1249–1251

    Article  CAS  Google Scholar 

  6. Zaks A, Klibanov AM (1985) Proc Natl Acad Sci USA, 82: 3192–3196

    Article  CAS  Google Scholar 

  7. Klibanov AM (1986) Chemtech 16: 354–359

    CAS  Google Scholar 

  8. Kazandjian RZ, Dordick JS, Klibanov AM (1986) Biotechnol Bioeng 28: 417–421

    Article  CAS  Google Scholar 

  9. Saini S, Hall GF, Downs MEA, Turner APF (1991) Anal Chim Acta 249: 1–15

    Article  CAS  Google Scholar 

  10. Hammond DA, Karel M, Klibanov AM, Krukonis VJ (1985) Appl Biochem Biotechnol 11: 393–400

    CAS  Google Scholar 

  11. Randolph TW, Blanch HW, Prausnitz JM, Wilke CR (1985) Biotechnol Lett 7: 325–328

    Article  CAS  Google Scholar 

  12. Barzana E, Klibanov A, Karel M (1987) Appl Biochem Biotechnol 15: 25–34

    CAS  Google Scholar 

  13. Barzana E, PhD Thesis, Massachusetts Institute of Technology, Cambridge, USA

    Google Scholar 

  14. Barzana E, Klibanov AM, Karel M (1989) Anal Biochem 182: 109–115

    Article  CAS  Google Scholar 

  15. Guilbault GG, Luong JH (1988) J Biotechnol 9: 1–10

    Article  CAS  Google Scholar 

  16. Flores A, Eliason LK, Wu YC (1981) Nat Bur Stand Special Publication 480–41, US Department of Commerce, Washington, DC

    Google Scholar 

  17. Patel RN, Hou CT, Laskin AI, Derelanko P (1981) Arch Biochem Biophys 210: 481–488

    Article  CAS  Google Scholar 

  18. Lamare S, Legoy MD (1993) TIBTECH 11: 413–418

    CAS  Google Scholar 

  19. Yagi T, Tsuda M, Mori Y, Inokuchi H (1969) J Am Chem Soc 91: 2801

    Article  CAS  Google Scholar 

  20. Kimura K, Suzuki A, Inokichi H, Yagi T (1979) Biochim Biophys Acta 567: 96–105

    CAS  Google Scholar 

  21. Cedeño M, Waissbluth M (1978) Enzyme Egineering, Brown GB, Maneckee G, Wingard LB (eds) Vol. 4, pp 405–407. Plenum, New York

    Google Scholar 

  22. Hou CT, Patel R, Laskin AI, Barnable N (1979) Appl Environ Microbiol 38: 127–134

    CAS  Google Scholar 

  23. Hou CT (1982) US Patent 4: 348, 476

    Google Scholar 

  24. Habets-Crutzen AGH, Brink LES, van Ginkel CG, de Bont JAM, Tramper J (1984) Appl Microbiol Biotechnol 20: 245–250

    Article  Google Scholar 

  25. de Bont JAM, van Ginkel CG, Tramper J, Luyben KChAM (1983) Enzyme Microb Technol 5: 55–59

    Article  Google Scholar 

  26. Hou CT (1984) Appl Microbiol Biotechnol 19: 1–4

    Article  CAS  Google Scholar 

  27. Hamstra RS, Murris MR, Tramper J (1987) Biotechnol Bioeng 29: 884–891

    Article  CAS  Google Scholar 

  28. Hopkins TR, Muller F (1987) In (van Verseveld HW, Duine JA, eds) Microbial growth on C1 compounds pp 150–157, Nijhoff, Dordrecht, The Netherlands

    Google Scholar 

  29. Barzana E, Karel M, Klibanov AM (1989) Biotechnol Bioeng 34: 1178–1185

    Article  CAS  Google Scholar 

  30. Duff SJB, Murray WD (1990) Process Biochem 25: 40–42

    Google Scholar 

  31. Chiang HK, Foutch GL, Fish WW (1991) Appl Biochem Biotechnol 28–9: 513–525

    Google Scholar 

  32. Kim CH, Rhee SK (1992) Biotechnol Lett 14: 1059–1064

    Article  CAS  Google Scholar 

  33. Pulvin S, Legoy MD, Lortie R, Pensa M, Thomas D (1986) Biotechnol Lett 8: 783–784

    Article  CAS  Google Scholar 

  34. Pulvin S, Parvaresh F, Thomas D, Legoy MD (1988) Ann NY Acad Sci 613: 303–312

    Google Scholar 

  35. Parvaresh F, Vic G, Thomas D, Legoy MD (1990) Ann NY Acad Sci 613: 303–312

    Article  CAS  Google Scholar 

  36. Parvaresh F, Robert H, Thomas D, Legoy MD (1992) Biotechnol Bioeng 39: 467–473

    Article  CAS  Google Scholar 

  37. Robert H, Lamare S, Parvares F, Legoy MD (1992) Prog Biotechnol 8: 85–92

    Article  CAS  Google Scholar 

  38. Ross NW, Schneider H (1991) Enzyme Microb Technol 13: 370–377

    Article  CAS  Google Scholar 

  39. Hillman AR, Loveday DC, Swaan MJ, Bruckenstein S, Wilde CP (1992) Analytical applications of the electrochemical quartz crystal microbalance. In: Edelman PG, Wang J Biosensors and chemical sensors. ACS Symposium Series 487, American Chemical Society, Washington

    Google Scholar 

  40. King WH, Jr (1964) Anal Chem 36: 1735–1739

    Article  CAS  Google Scholar 

  41. Shons A, Dorman F, Najarian JJ (1972) J Biomed Mater Res 6: 565–570

    Article  CAS  Google Scholar 

  42. Rice TK (1980) US Patent 4: 314, 821, Feb 9, 1982

    Google Scholar 

  43. Roederer JE, Baastians GJ (1983) Anal Chem 55: 2333–2336

    Article  CAS  Google Scholar 

  44. Karube I, Gotoch M (1987) In: Guilbault GG, Mascini M (3ds) Analytical uses of immobilized biological compounds for detection, medical and industrial uses, Reidel Pub Co

    Google Scholar 

  45. Prusak-Sochaczewski E, Luong JHT, Luong, Guilbault GG (1990) Enzyme Microb Technol 12: 173–177

    Article  CAS  Google Scholar 

  46. Guilbault GG (1984) Anal Chem 55: 1682–1684

    Article  Google Scholar 

  47. Bickerstaff GF (1987) Enzymes in industry and medicine. New Studies in Biology Series. Edward Arnold, London

    Google Scholar 

  48. Ngeh-Ngwainbi J, Foley PH, Kuan SS, Guilbault GG (1986) J Am Chem Soc 108: 5444–5447

    Article  CAS  Google Scholar 

  49. MacIntirei WS (1990) Methods Enzymol 188: 250–260

    Article  Google Scholar 

  50. Wong K, Gill TA (1988) J Food Sci 53: 1653

    Article  CAS  Google Scholar 

  51. Gamati S, Luong JHT, Mulchandani A (1991) Biosensors & Bioelectronics (1991) 6: 125–131

    Article  CAS  Google Scholar 

  52. Mandenius CF, Danielsson B, Mattiasson B (1984) Anal Chim Acta 163: 3–15

    Article  Google Scholar 

  53. Marshall E (1987) Science 236: 381

    Article  CAS  Google Scholar 

  54. Liu WR, Langer R, Klibanov AM (1991) Biotechnol Bioeng 37: 177–184

    Article  CAS  Google Scholar 

  55. Roziewski K, Russell AJ (1992) Biotechnol Bioeng 39: 1171–1175

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bárzana, E. (1995). Gas phase biosensors. In: Downstream Processing Biosurfactants Carotenoids. Advances in Biochemical Engineering/Biotechnology, vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102323

Download citation

  • DOI: https://doi.org/10.1007/BFb0102323

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-59308-9

  • Online ISBN: 978-3-540-49234-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics