The potential of using cyanobacteria in photobioreactors for hydrogen production

  • S. A. Markov
  • M. J. Bazin
  • D. O. Hall
Part of the Advances in Biochemical Engineering/Biotechnology book series (ABE, volume 52)


This review surveys data on cyanobacterial hydrogen photoproduction with a view to a use of cyanobacteria in photobioreactors for hydrogen production.

Three groups of cyanobacteria can be distinguished based on their hydrogen producing physiological characteristics: a) heterocystous filamentous, b) nonheterocystous filamentous and c) nonheterocystous unicellular strains. Information on certain metabolically unique strains of cyanobacteria which have special promise for practical hydrogen production is reviewed.

Environmental parameters and physiological factors which might be of use to optimize cyanobacterial hydrogen generation are identified and summarized. These parameters include: light intensity, gas atmosphere (CO2, N2 and O2), temperature, pH, carbohydrate substrates, metal ions, H2 uptake systems, age of cyanobacterial culture, cell density, and immobilization of cells.

Immobilization of cyanobacterial cells in polyurethane or polyvinyl foams, hollow fibres, glass beads and cotton, leads to an increase/or stabilization for several months or more of hydrogen production. Cell immobilization results in an increased heterocyst frequency (up to 40%). Immobilized cells in comparison with free living cells are likely to be more suitable for hydrogen production in photobioreactors.

Nitrogenase is a major catalytic enzyme for hydrogen production in cyanobacteria, which can express three distinct nitrogenases: molybdenum nitrogenase, vanadium nitrogenase and iron nitrogenase. Details of the biochemical manipulation of nitrogenase-catalyzed hydrogen photo-production is reviewed. In the case of molybdenum-independent nitrogenases, hydrogen production is significantly higher than for molybdenum-containing nitrogenase. Cyanobacterial hydrogenase is an enzyme which catalyzes both hydrogen evolution and hydrogen uptake. Several means to inhibit hydrogenase uptake activity are described. Removal of H2 from the cyanobacterial cell environment in a continuous-flow photobioreactor is an effective method of preventing hydrogen uptake. Cyanobacteria may also be genetically modified for deletion of the uptake hydrogenase gene. Other objectives of genetic research related to cyanobacterial hydrogen photoproduction are reviewed.

A number of reports on cyanobacterial photobioreactors for hydrogen production are described. Such photobioreactors can be operated continuously for several months or more. Under outdoor conditions H2-producing photobioreactors operated at good efficiencies. For example a 51 outdoor photobioreactor with Oscillatoria sp. produced hydrogen for a week at rates of 8.2 ml g−1 h−1.

Particular attention in the review is given to fixed bed hollow fibre column photobioreactors. Several advantages of those constructions are characterized. Photoproduction of hydrogen at rates up to 200 ml g−1 h−1 in a photobioreactor with hollow fibre immobilized Anabaena variabilis was observed for more than 5 months. An example of a computer-controlled equipment system for cyanobacterial growth is given.


Hydrogen Production Hollow Fibre Hydrogen Production Rate MoFe Protein Heterocystous Cyanobacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bolton JR, Hall DO (1979) Ann Rev Energy 42: 353Google Scholar
  2. 2.
    Harriman A, West MA (1982) Photoproduction of hydrogen. Academic, LondonGoogle Scholar
  3. 3.
    Grätzel M (ed) (1983) Energy resources through photochemistry and catalysis. Academic, New YorkGoogle Scholar
  4. 4.
    Veziroglu TN, Takahashi PK (eds) (1990) Hydrogen Energy Progress VIII. Proceedings of the 8th World Hydrogen Energy Conference. Honolulu and Waikoloa, Hawaii, USA. 22–27 July 1990. (in Three Volumes) Pergamon, New York, p. 1594Google Scholar
  5. 5.
    Hall DO, Rao KK (1989) Chimicaoggi 7: 40Google Scholar
  6. 6.
    Bothe H, Kentemich T (1990) Potentialities of H2 production by cyanobacteria for solar energy conversion programs. In: Veziroglu TN, Takahashi PK (eds) Hydrogen Energy Progress VIII. Proc. 8th World Hydrogen Energy Conference, Honolulu and Waikoloa, Hawaii, USA, 22–27 July 1990. Pergamon, New York, p 729Google Scholar
  7. 7.
    Mitsui A, Kumazawa, S, Takahashi A, Ikemoto H, Suda S, Hanagata N, Domeier M, Komatsu M, Benkert J (1990) Overview on the biological hydrogen photoproduction research. In: Hydrogen Photoproduction Workshop IV. Waikoloa, Hawaii, 26–27 July 1990, p 171Google Scholar
  8. 8.
    Gogotov IN, Troshina OY (1990) Biotechnological foundations for hydrogen production by employing phototrophic microorganisms. In: Hydrogen Photoproduction Workshop IV. Waikoloa, Hawaii, 26–27 July 1990, p 123Google Scholar
  9. 9.
    Markov SA, Rao KK, Hall DO (1992) A hollow fibre photobioreactor for continuous production of hydrogen by immobilized cyanobacteria under partial vacuum. In: Veziroglu TN, Derive C, Pottier J (eds) Hydrogen energy progress IX. Proc. 9th World Hydrogen Energy Conference, Paris 1992, MCI, Paris, p 641Google Scholar
  10. 10.
    Pirt SJ, Lee YK, Walach MR, Pirt MW, Balyuzi HHM, Bazin M (1983) J Chem Tech Biotechnol, 33B: 35Google Scholar
  11. 11.
    Walach MR, Bazin M, Pirt JS, Balyuzi HM (1986) Biotech Bioeng 29: 520Google Scholar
  12. 12.
    Garbisu C, Gil JM, Bazin MJ, Hall DO, Serra JL (1991) J Appl Phycology 3: 221Google Scholar
  13. 13.
    Park IH, Rao KK, Hall DO (1991) Biochem. (Life Sci. Adv.) 10: 173Google Scholar
  14. 14.
    Lee YK, Low C-S (1992) Biotechnol Bioeng 40: 1119Google Scholar
  15. 15.
    Fay P (1965) J Gen Microbiol 35: 11Google Scholar
  16. 16.
    Okhi K, Katoh T (1975) Plant and Cell Physiology 16: 53Google Scholar
  17. 17.
    Smith AJ (1983) Ann Microbiol (Inst Pasteur) 134B: 93Google Scholar
  18. 18.
    Markov SA, Porshneva EB, Nikolaeva LF (1985) Stability of photosynthetic apparatus and nitrogenase system in the blue-green alga in the darkness. In: Environmental Conditions and Plant Productivity. East Siberian Book Publisher, Irkutsk, p 125 (in Russian)Google Scholar
  19. 19.
    Padan E (1979) Adv Microbial Ecol, 3: 1Google Scholar
  20. 20.
    Gusev MV (1968) The Biology of Blue-green Algae. Moscow University Publisher, Moscow (in Russian)Google Scholar
  21. 21.
    Carr NG, Whitton BA (eds) (1973) The Biology of Blue-green Algae. Blackwell, OxfordGoogle Scholar
  22. 22.
    Fogg GE, Stewart WDP, Fay P, Walsby AE (1982) The Blue-green Algae. Academic Press, LondonGoogle Scholar
  23. 23.
    Gusev MV and Nikitina KA (1979) Cyanobacteria: Physiology and Metabolism, Nauka, Moscow (in Russian)Google Scholar
  24. 24.
    Humm HJ, Wicks SR (1980) Introduction and guide to the marine bluegreen algae. Wiley, New YorkGoogle Scholar
  25. 25.
    Fay P (1983) The Blue Greens (Studies in Biology/Institute of Biology, No. 160), Camelot, SouthamptonGoogle Scholar
  26. 26.
    Carr NG, Whitton BA (eds) (1982) The biology of cyanobacteria. Blackwell, OxfordGoogle Scholar
  27. 27.
    Fay P, Van Baalen C (eds) (1987) The cyanobacteria. Elsevier, AmsterdamGoogle Scholar
  28. 28.
    Mann NH, Carr NG (eds) (1992) Photosynthetic prokaryotes. Plenum, New YorkGoogle Scholar
  29. 29.
    Ciferri O (1983) Microbiol Rev 47: 551Google Scholar
  30. 30.
    Shestakov SB (1984) Perspectives of using phototrophic bacteria in biotechnology. In: Baev AA (ed) Biotechnology. Nauka, Moscow, p 160 (in Russian)Google Scholar
  31. 31.
    Lambert GR, Smith GD (1981) Biol Rev 56: 589Google Scholar
  32. 32.
    Benemann JR, Weare NM (1974) Science 184: 174Google Scholar
  33. 33.
    Oshchepkov VP, Nikitina KA, Gusev MV, Krasnovsky AA (1974) Doklady Akademii Nauk SSSR 213: 557Google Scholar
  34. 34.
    Bishop NI, Frick M, Jones LM (1978) Alternative fates of the photochemical reducing power generated in photosynthesis: Hydrogen production and nitrogen fixation. In: Current Topics in Bioenergetics 8: 3Google Scholar
  35. 35.
    Asada Y, Miyake M, Tomizuka N (1992) Hydrogenase-mediated hydrogen metabolism in some cyanobacteria. In: Murata N (ed) Research in Photosynthesis. Kluwer, Dordrecht vol I, p 477Google Scholar
  36. 36.
    Fay P (1992) Microbiol Rev 56: 340Google Scholar
  37. 37.
    Adams DC, Carr NG (1981) Crit Rev Microbiol 9: 45Google Scholar
  38. 38.
    Fay P (1980) Nitrogen fixation in heterocysts. In: Subba Rao NS (ed) Recent Advances in Biological Nitrogen Fixation. Edward Arnold, London, p 121Google Scholar
  39. 39.
    Haselkorn R (1978) Ann Rev Plant Physiol 29: 319Google Scholar
  40. 40.
    Wolk CP (1982) Heterocysts. In: Carr NG, Whitton BA (eds) The Biology of Cyanobacteria. Blackwell, Oxford, p 359Google Scholar
  41. 41.
    Kondratieva EN, Gogotov IN (1981) Molecular Hydrogen in Microbial Metabolism. Nayka, Moscow (in Russian)Google Scholar
  42. 42.
    Houchins J (1984) Biochim Biophys Acta 768: 227Google Scholar
  43. 43.
    Kangatharalingam N, Dodds WK, Priscu JC, Paerl HW (1991) J Phycol 27: 680Google Scholar
  44. 44.
    Jüttner F (1983) J Bacteriol 155: 628Google Scholar
  45. 45.
    Bothe H, Distler E, Eisbrenner G (1978) Biochimie 60: 277Google Scholar
  46. 46.
    Neuer G, Bothe H (1985) Arch Microbiol 143: 185Google Scholar
  47. 47.
    Winkenbach F, Wolk CP (1973) Plant Physiol 52: 480Google Scholar
  48. 48.
    Tamagnini P, Yakunin AF, Gogotov IN, Liddblad P (1993) FEMS Microbiol Letters 107: 37Google Scholar
  49. 49.
    Bothe H (1977) Flavodoxin. In: Trebst A, Avron M (eds) Encyclopedia of Plant Physiology. New series, Photosynthesis 1. Springer, Berlin Heidelberg New York, vol 5, p 217Google Scholar
  50. 50.
    Yakunin AF, Hallenbeck PC, Troshina OY, Gogotov IN (1993) BBA (in press)Google Scholar
  51. 51.
    Benemann JR, Yovh DC, Valentine RC, Arnon DI (1969) The electron transport system in nitrogen fixation by Azotobacter. I. Azotoflavin as an electron carrier. In: Proc. Nat. Acad. Sci. USA 64: 1079Google Scholar
  52. 52.
    Houchins JP, Hind G (1982) Biochim Biophys Acta 682: 86Google Scholar
  53. 53.
    Eisbrenner G, Bothe H (1979) Arch Microbiol 123: 37Google Scholar
  54. 54.
    Stanier RY, Ingraham JL, Wheelis ML, Painter PR (1987) General Microbiology. Macmillan HoundmillsGoogle Scholar
  55. 55.
    Kerfin W, Böger P (1982): Physiol Plant 54: 93Google Scholar
  56. 56.
    Adams DG (1992) J Gen Microbiol 138: 355Google Scholar
  57. 57.
    Sahy J, Adnicary SP (1981) Zeitschr Allgem Microbiol 21: 669Google Scholar
  58. 58.
    Hill DJ (1975) Planta 122: 179Google Scholar
  59. 59.
    Brouers M, Hall DO (1986) J Biotechnology 3: 307Google Scholar
  60. 60.
    Braun-Howland EB, Nierzwicki-Bauer SA (1990) Azolla-Anabaena symbiosis: biochemistry, physiology, ultrastructure, and molecular biology. In: Rai AN (ed) Handbook of Symbiotic Cyanobacteria. CRC Press Boca Raton, Florida, p 65Google Scholar
  61. 61.
    Shi D-J, Hall DO (1988) Plants Today 1: 5Google Scholar
  62. 62.
    Smith RV, Evans MCW (1970) Nature 225: 1253Google Scholar
  63. 63.
    Gallon JR, Chaplin AE (1988) Recent studies on N2 fixation by nonheterocystous cyanobacteria. In: Bothe FJ, de Bruijn FJ, Newton WE (eds) Nitrogen Fixation: Hundreds Years After. Gustav Fischer, Stuttgart, Germany, p 183Google Scholar
  64. 64.
    Gallon JR (1992) New Phytol 122: 571Google Scholar
  65. 65.
    Mullineaux PM, Chaplin AE, Gallon JR (1980) J Gen Microbiol 120: 227Google Scholar
  66. 66.
    Gallon JR, Perry SM, Rajab TMA, Flayeh KAM, Junes JS, Chaplin AE (1988) J Gen Microbiol 134: 3079Google Scholar
  67. 67.
    Rai AN, Borthakur M, Bergman B (1992) J Gen Microbiol 138: 481Google Scholar
  68. 68.
    Rippka R, Waterbury JB (1977) FEMS Microbiol Letters 2: 83Google Scholar
  69. 69.
    Nguen Thi Hoa (1985) Conditions of nitrogen fixation in cyanobacteria Plectonema boryanum and Gloeothece. Summary of PhD thesis, Moscow State University, Moscow (in Russian)Google Scholar
  70. 70.
    Suda S, Kumasawa S, Mitsui A (1992) Arch Microbiol, 158: 1Google Scholar
  71. 71.
    Kuwada Y, Nakatsukasa M, Ohta Y (1988) Agrac Biol Chem 52: 1923Google Scholar
  72. 72.
    Kuwada K, Inoue Y, Koike H, Ohta Y (1991) Agric Biol Chem 55: 299Google Scholar
  73. 73.
    Kumazawa S, Mitsui A (1985) Appl Environ Microbiol 50: 287Google Scholar
  74. 74.
    Kumazawa S, Mutsui A (1991) Plant Science Tomorrow 3: 8Google Scholar
  75. 75.
    Subramanian G, Prabaharan D (1989) Hydrogen production by marine cyanobacteria. In: Abst. The First International Marine Biotechnology Conference. Tokyo, Japan. 4–6 September 1989, p 21Google Scholar
  76. 76.
    Prabaharan D (1992) Hydrogen production by marine cyanobacteria. PhD thesis. Bharathidasan University, Tiruchrapalli, IndiaGoogle Scholar
  77. 77.
    Mitsui A, Rosner D, Kumazawa S, Barciela S, Philips E, Ramachandran S, Takahashi A, Richards J (1985) Hydrogen production from salt water by marine blue-green algae and solar radiation. In: Haise FW (ed) Proceedings of Twenty-Second Space Congress. Canaveral Council of Technical Societies, p 11Google Scholar
  78. 78.
    Serebryakova LT, Zorin NA, Gogotov IN (1992) Mikrobiologia 61: 175Google Scholar
  79. 79.
    Van der Oost J, Cox RP (1989) Arch Microbiol 151: 40Google Scholar
  80. 80.
    Van der Oost J, Kanneworff WA, Krab K, Kraayenhof R (1987) FEMS Microbiology 48: 48Google Scholar
  81. 81.
    Spiller H, Bookjans G, Shanmugam KT (1983) J Bacteriol 155: 129Google Scholar
  82. 82.
    Almon H, Böger P (1988) FEMS Microbiol Lett 49: 445Google Scholar
  83. 83.
    Laczko I, Barabas K (1981) FEBS Letters 153: 312Google Scholar
  84. 84.
    Belkin S, Padan E (1978) FEBS Letters 94: 291Google Scholar
  85. 85.
    Mitsui A, Philips EJ, Kumazawa S, Reddy KJ, Ramachandran S, Matsunaga T, Haynes L, Ikemoto H (1983) Progress in research toward outdoor biological hydrogen production using solar energy, sea water, and marine photosynthetic microorganisms. In: Biochemical Engineering 111–413. Annals of the New York Academy of Sciences, p 514Google Scholar
  86. 86.
    Jeffries TW, Timourian H, Ward RL (1978) Appl Environ Microbiol 35: 704Google Scholar
  87. 87.
    Agar J, Suda S, Takeyama H, Lee W, Mitsui A (1991) Hydrogen and oxygen photoproduction by marine unicellular cyanobacterium under high light intensities equivalent to mid-day intensities. In: Abstract 2nd Int. Marine Biotechnology Conference, Baltimore, USA, 13–16 October 1991, p 75Google Scholar
  88. 88.
    Markov SA (1987) The relationship between nitrogenase activity, photosynthesis, and assimilation of exogenic carbohydrates in cyanobacterium Chlorogloesopsis fritshii. PhD thesis, Moscow State University, Moscow (in Russian)Google Scholar
  89. 89.
    Markov SA, Polesskaya OG, Krasnovsky AA (1991) Soviet Plant Physiology 38: 652Google Scholar
  90. 90.
    Kumar D, Kumar HD (1991) Int J Hydrogen Energy 16, 397Google Scholar
  91. 91.
    Markov SA, Krasnovsky AA (1985) Soviet Plant Physiology 32: 562Google Scholar
  92. 92.
    Jensen BB, Cox RP (1983) Arch Microbiol 135: 287Google Scholar
  93. 93.
    Jeffries TW, Leach KT (1978) Appl Environ Microbiol 35: 1228Google Scholar
  94. 94.
    Peleckaya EN, Polesskaya OG, Krasnovsky AA (1986) Prikladnaya Biochimia i Mikrobiologia 22: 500 (in Russian)Google Scholar
  95. 95.
    Philips EJ, Mitsui A (1983) Appl and Environ Microbiol 45: 1212Google Scholar
  96. 96.
    Kumazawa S, Suda, S, Mitsui A (1991) Effect of cell densities to the hydrogen photoproduction by marine cyanobacteria, Synechococcus sp. Miami BG4351 and Anabaena sp. TU37-1. In: Abst. 91st General Meeting of Amer. Soc. Microbiol. p 222Google Scholar
  97. 97.
    Jones BB, Bishop NI (1976) Plant Physiol 57:659Google Scholar
  98. 98.
    Lambert GR, Smith GD (1980) Arch Biochem Biophys 205: 36Google Scholar
  99. 99.
    Lambert GR, Smith GD, (1977) FEBS Lett 83: 159Google Scholar
  100. 100.
    Kondratieva EN, Gogotov IN (1983) Production of molecular hydrogen in microorganisms. In: Adv. Biochem. Engineering/Biotechnology 28: 139Google Scholar
  101. 101.
    Smith GD, Lambert GR (1981) Biotech Bioeng 23: 213Google Scholar
  102. 102.
    Lambert GR, Daday A, Smith GD (1979) Appl and Environ Microbiol 38: 521Google Scholar
  103. 103.
    Yakunin AF, Troshina OY, Jha M, Gogotov IN (1992) Mikrobiologia 61: 377Google Scholar
  104. 104.
    Troshina OY, Gogotov, IV (1992) Prikladnaya Biochimia i Mikrobiologia 28: 380 (in Russian)Google Scholar
  105. 105.
    Rozen A, Arad H, Schonfeld M, Tel-or E (1981) Arch Microbiol 145: 187Google Scholar
  106. 106.
    Asada Y, Kawamura S, Ho K-K (1987) 26: 637Google Scholar
  107. 107.
    Smith GD, Ewart GD, Tucker W (1992) Int J Hydrogen Energy 17: 695Google Scholar
  108. 108.
    Tredici MR, Margheri MC, De Philippis R, Materassi R (1990) J Gen Microbiol 136: 1009Google Scholar
  109. 109.
    Yakunin AF, Chan Van Ni, IN Gogotov (1989) Dokladi Akademii Nayk SSSR 307: 1269Google Scholar
  110. 110.
    Sybesma C, Schowanek D, Slooten L, Walravens N (1986) Photosynthesis Research 9: 149Google Scholar
  111. 111.
    Antarikanonda P, Bernd H, Mayer F, Lorenzen H (1980) Arch Microbiol 69: 114Google Scholar
  112. 112.
    Polesskaya OG, Krasnovsky AA (1985) Soviet Plant Physiology 32: 79Google Scholar
  113. 113.
    Houchins JP, Burris RH (1981) Plant Physiol 68: 717Google Scholar
  114. 114.
    Lindblad P, Sellstedt A (1990) Protoplasma 159: 9Google Scholar
  115. 115.
    Eisbrenner G, Distler E, Floener L, Bothe H (1978) Arch Microbiol 118: 177Google Scholar
  116. 116.
    Benemann JR, Weare NM (1974) Arch Microbiol 101: 401Google Scholar
  117. 117.
    Peterson RB, Burris RH (1978) Arch Microbiol 116: 125Google Scholar
  118. 118.
    Shi D-J (1987) Energy metabolism and structure of the immobilized cyanobacterium Anabaena azollae. PhD thesis, King's College London, University of London, LondonGoogle Scholar
  119. 119.
    Egorov NS, Landaw NS, Borman EA, Kotova NB (1984) Prikladnaya Biokhimia i Mikrobiologia 20: 579 (in Russian)Google Scholar
  120. 120.
    Philips EJ, Mitsui A (1986) Int J Hydrogen Energy 11: 83Google Scholar
  121. 121.
    Rao KK, Hall DO (1992) Immobilized photosynthetic system: application in biotechnology. In: Barber J, Guerrero MG, Medrano H (eds) Trends in Photosynthetic Research. Intercept, Andover, Hampshire, p 135Google Scholar
  122. 122.
    Muallem A, Bruce D, Hall DO (1983) Biotech Letters 5: 365Google Scholar
  123. 123.
    Hall DO, Brouers M, de Jong H, De la Rosa MA, Rao KK, Shi DJ, Yang LW (1987) Photobiochem Photobiophys Suppl: 167Google Scholar
  124. 124.
    Sasikala K, Ramana CV Rao PR (1992) Int J Hydrogen Energy 17: 23Google Scholar
  125. 125.
    Kentemich T, Casper M, Bothe H (1991) Naturwissenschaften 78: 559Google Scholar
  126. 126.
    Kentemich T, Danneberg G, Hundeshagen B, Bothe H (1988) FEMS Microbiology Letters 51: 19Google Scholar
  127. 127.
    Georgiadis MM, Komiya H, Chakrabarti P, Woo D, Kornuc JJ, Rees DC (1992) Science 257: 1653Google Scholar
  128. 128.
    Kim J, Rees DC (1992) Science 257: 1677Google Scholar
  129. 129.
    Burris RH (1991) J Biol Chem 266: 9339Google Scholar
  130. 130.
    Smith BE, Eady R (1992) Eur J Biochem 205: 1Google Scholar
  131. 131.
    Sharavankumar CH, Polasa H (1992) Indian J Microbiol 32: 29Google Scholar
  132. 132.
    Hazelkorn R (1991) Genetic systems in cynanobacteria. In: Miller, JH (ed) Methods in Enzymology. Academic Press, Harcourt Brace Jovanovich, San Diego, vol 204, p 418Google Scholar
  133. 133.
    Wolk CP, Elhai J, Cai Y, Bancroff I, Panoff J-M (1990) Summary statement for hydrogen production workshop IV. In: Hydrogen Photoproduction Workshop IV. Waikoloa, Hawaii, 26–27 July 1990, p 107Google Scholar
  134. 134.
    Haselkorn R (1986) Ann Rev Microbiol 40: 525Google Scholar
  135. 135.
    Mulligan ME, Haselkorn R (1989) J Biol Chemistry 264: 19200Google Scholar
  136. 136.
    Elhai J, Wolk CP (1990) The EMBO Journal 9: 3379Google Scholar
  137. 137.
    Damerval T, Franche C, Rippka RM, Cohen-Bazire G (1985) Rearrangement of nif structural genes in Nostoc PCC7906. In: Evans HJ, Bottomley PJ, Newton WE (eds) Nitrogen Fixation Research Progress. Martinus Nijhoff, New York, p 517Google Scholar
  138. 138.
    Rice D, Mazur BJ, Haselkorn R (1982) J Biol Chem, 257: 13157Google Scholar
  139. 139.
    Zenhr JP, Ohki K, Fujita Y (1991) J Bacteriol 173: 7055Google Scholar
  140. 140.
    Kallas T, Coursin T, Rippka R (1985) Plant Mol Biol 5: 321Google Scholar
  141. 141.
    Apte SK, Thomas J (1987) J Genet 66: 101Google Scholar
  142. 142.
    Van der Oost J, Walraven HS, Bogerd J, Smit AB, Ewart GD, Smith GD (1989) Nucleic Acids Research 17: 10098Google Scholar
  143. 143.
    Miyamoto K, Hallenbeck PC and Benemann (1979) J Ferment Technol 57: 287Google Scholar
  144. 144.
    Mitsui A, Kumazawa S, Philips KJ, Reddy K, Gill K, Matsunaga T, Renuka BR, Kusumi T, Reyes-Vasquez G, Miyazawa K, Haynes L, Ikemoto H, Duerr E, Leon CB, Rosner D, Sesco R, Moffat E (1985) Mass cultivation of algae and photosynthetic bacteria: concepts and application. In: Ghose TK (ed) Biotechnology and Bioprocess Engineering. United India Press, New Delhi, p 119Google Scholar
  145. 145.
    Park IH, Rao KK, Hall DO (1991) Int J Hydrogen Energy 16: 313Google Scholar
  146. 146.
    Pulz O (1992) Cultivation techniques for microalgae in open and closed systems In: Proc. 1st European Workshop on Microlgal Biotechnology, Potsdam, 10–12 June 1992, p 61Google Scholar
  147. 147.
    Pulz O (1993) Semiclosed tubular-Pate systems for the cultivation of microalgae aimed to health, food and pharmaceutical use. In: 6th International Conference on Applied Algology, Česke Budějovice, Czech Republic, 6–11 September 1993, p 39Google Scholar
  148. 148.
    Hall DO, Garbisu C, Kannaiyan S, Lichtl R, Markov SA, Rao KK, Serra JL, Sopko B (1993) Photobioreactors with immobilized cyanobacteria for production of fuels and chemicals and for water purification: status potentials and problems. In: 6th International Conference on Applied Algology, Česke Budějovice, 6–11 September 1993, p 36Google Scholar
  149. 149.
    Lee ET-Y, Bazin M (1990) New Phytol 116: 331Google Scholar
  150. 150.
    Lee Y-K, Low C-S (1991) Biotechnol Bioeng 38: 995Google Scholar
  151. 151.
    Takano H, Takeyama H, Nakamura N, Sode K, Burgess, JG, Manabe F, Hirano M, Matsunaga T (1992) Appl Biochem Biotechnol 34/35: 449Google Scholar
  152. 152.
    Karube I, Takeuchi T, Barnes DJ (1992) Adv Biochem Engineering/Biotechnology 46: 63Google Scholar
  153. 153.
    Vincenzini M, Brouers M, Hall DO, Materassi R (1986) Photobiochem. Photobiophys 13: 63Google Scholar
  154. 154.
    Wang SC, Jin MR, Hall DO (1991) Bioresource Technology 38: 85Google Scholar
  155. 155.
    Garbisu C (1992) Nitrate and phosphate uptake from water by free-living and immobilized cells of the cyanobacterium Phormidium laminosum. PhD thesis. King's College London, University of LondonGoogle Scholar
  156. 156.
    Zhong, JJ, Yoshida M, Fujiyama K, Seki T, Yoshida T (1993) J Ferment Bioeng 75: 299Google Scholar
  157. 157.
    Xu XY, Kosaric N (1991) Water Science and Technology 24: 221Google Scholar
  158. 158.
    Walach MR, Balyuzi HHM, Bazin MJ, Lee YK, Pirt SJ (1983) J Chem Tech Biotechnol 33B: 59Google Scholar
  159. 159.
    Weetall HH, Sharma BP, Detar LC (1981) Biotech Bioeng 23: 605Google Scholar
  160. 160.
    Von Felten P, Zurrer H, Bachofen R (1985) Appl Microbiol Biotechnol 23: 15Google Scholar
  161. 161.
    Hirayama O, Uya K, Hiramutsu Y, Yamada H, Moriwaki K (1986) Agric Biol Chem 50: 891Google Scholar
  162. 162.
    Kim JS, Ito K, Izaki K, Takahashi H (1987) Argic Biol Chem 51: 2591Google Scholar
  163. 163.
    Planchard A, Mignot L, Jouenne T, Junter G-A (1989) Appl Microbiol Biotechnol 31: 49Google Scholar
  164. 164.
    Mignot L, Junter GA, Labbe M (1989) Biotechnology Techniques 3: 299Google Scholar
  165. 165.
    Delachapelle S, Renaud M, Vignais P (1991b) Revue des sciences de l'eau 4: 83 (in French)Google Scholar
  166. 166.
    Delachapelle S, Renaud M, Vignais P (1991b) Revue des sciences de l'eau 4: 101 (in French)Google Scholar
  167. 167.
    Sasikala K, Ramana CV, Rao PR, Kovacs (1993) Anoxygenic phototrophic bacteria: Physiology and advances in hydrogen production technology. In: Adv. Applied Microbiology, Hidleman S, Laskin AI (eds) Academic, San Diego, p. 211Google Scholar
  168. 168.
    Khan MMT, Bhatt JP (1991) Int J Hydrogen Energy 16: 83Google Scholar
  169. 169.
    Khan MMT, Adiga MR, Bhatt JP (1992) Int J Hydrogen Energy 17: 93Google Scholar
  170. 170.
    Matsunaga T (1991) Production of useful chemicals from CO2 by marine microalgae using a biosolar reactor empolying light diffusing optical fibres. In: 2nd Int. Marine Biotechnology Conf. Baltimore, MD, USA. 13–16 October 1991, p 61Google Scholar
  171. 171.
    Pohl P, Kohlhase M, Martin M (1988) Photobioreactors for the axenic mass cultivation of microalgae. In: Stadler T, Karamanos Y, Mollion H, Morvan H, Verdus M-C, Christiaen D (eds) Algal Biotechnology. Proc. 4th International Meeting of the Society for Applied Algology. Villeneuve d'Ascq (France), p 209Google Scholar
  172. 172.
    Linton EA, Knowles CJ, Bunch AW, Higton G (1987) The biotechnological potential of microbial hollow-fibre bioreactors. In: Proc. International Conference on Bioreactors and Biotransformations. Gleneagles, Scotland, UK 9–12 November, 1987, p 299Google Scholar
  173. 173.
    Bunch AW (1988) J Microbiol Methods 8: 103Google Scholar
  174. 174.
    Donoghue C, Brideau M, Newcomer P, Pangrle B, DiBiasio D, Walsh E, Moore S (1992) Use of Magnetic resonance imaging to analyze the performance of hollow-fibre bioreactors. In: Biochemical Engineering VII. Annals of the New York Academy of Sciences, 665, New York, p 285Google Scholar
  175. 175.
    Nyberg SL, Shatford RA, Peshwa MV, White JG, Serra FB, Hu WS (1993) Biotechnol Bioeng 41: 194Google Scholar
  176. 176.
    Feder J (1987) Flat bed hollow fibre reactors for large-scale cultivation of animal cells. In: Mosbach (ed). Methods in Enzymology Academic Press, Harcourt Brace Jovanovich, Orlando, vol 135, p 393Google Scholar
  177. 177.
    Chiemchairsri C, Yamamoto K, Vigneswaran S (1993) Water Science and Technology 27: 171Google Scholar
  178. 178.
    McKinley KR, Rocheleau RE, Takahashi PK, Bulina EJ, Jensen CM (1992). Hydrogen research and development in Hawaii. In: Veziroglu TN, Derive C, Pottier J (eds) Hydrogen Energy Progress IX. Proc. 9th World Hydrogen Energy Conference, Paris 1992, MCI, Paris, p 641Google Scholar
  179. 179.
    Kentemich T, Haverkamp G, Bothe H (1991) Z Naturforsch 46c: 217Google Scholar
  180. 180.
    Hall DO, Rao KK, Park IH (1991) Immobilized photosynthetic system for the production of fiels and chemicals. In: Environmental Biotechnology. Proc. International Symposium of Biotechnology. Bratislava, 27–29, June 1990 p. 259Google Scholar
  181. 181.
    Richmond A (1992) Mass culture of cyanobacteria. In: Mann N, Carr NG (eds) Photosynthetic Prokaryotes. Plenum, New York, p 181Google Scholar
  182. 182.
    Kuwada Y, Ohta Y (1987) J Ferment Technology 65: 597Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • S. A. Markov
    • 1
  • M. J. Bazin
    • 1
  • D. O. Hall
    • 1
  1. 1.Environmental Biotechnology Research Group, Division of Life SciencesKing's College LondonLondonUK

Personalised recommendations