Skip to main content

Kinetics and energetics of photosynthetic micro-organisms in photobioreactors

Application to Spirulina growth

  • Chapter
  • First Online:
Bioprocess and Algae Reactor Technology, Apoptosis

Part of the book series: Advances in Biochemical Engineering Biotechnology ((ABE,volume 59))

Abstract

This paper provides the basis for the description and quantitative analysis of cultures of photosynthetic micro-organisms in batch and in continuous photobioreactors. The methodology generally accepted for modeling submerged aerobic or anaerobic cultures is used and applied to the growth of the blue-green algae Spirulina platensis.

From analysis of the metabolic pathways inside the cell, stoichiometric equations are derived for the main metabolic events which must be considered for Spirulina growth, including exopolysaccharide formation. Together with the description of the reaction kinetics, it forms the basis for modeling.

As the rate of growth is closely related to the light energy available inside the culture medium, special attention is paid to the description of light energy transfer inside a dense liquid medium which absorbs and scatters the light, and the useful concept of working illuminated volume is introduced. The reaction kinetics accounts too for the mineral limitations (nitrogen, sulphur and phosphorus) as well as physical and physiological limitations by the carbon source.

Finally, a so-called biochemically structured model gives a unified vision of yields and rates of growth observed for various light energy inputs and different nutrients limitations. The proposed methodology enables one to define and calculate the thermodynamic efficiency for the light energy conversion process in photobioreactors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A :

Volumetric rate of radiant energy absorbed (W.m−3)

A λ :

Volumetric rate of radiant energy absorbed for radiation of wavelength λ (W.m−4)

Ai :

Chemical affinity for the component i (J.kmole−1)

a:

Extinction coefficient of Lambert (m−1)

C:

State vector (kg.m−3)

Ci :

Mass concentration of component i (kg.m−3)

C′i :

Molar concentration of component i (kmole.m−3)

D:

Dilution rate (h−1)

E:

Acceleration factor by chemical reaction (−)

Ea:

Absorption mass coefficient (m2.kg−1)

Ea(λ):

Absorption mass coefficient for radiation of wavelength λ (m2.kg−1)

Es:

Scattering mass coefficient (m2.kg−1)

Es(λ):

Scattering mass coefficient for radiation of wavelength λ (m2.kg−1)

F:

Volumetric flow rate (m3.h−1)

F:

Radiant energy flux vector (W.m−2)

Fλ :

Radiant energy flux vector for radiation of wavelength λ (W.m−3)

G:

Molar gas flow rate (kmole.h−1)

gi :

Partial molar free enthalpy for the component i (J.kmole−1)

H′:

Henry's constant (Pa.m3.kmole−1)

ΔH:

Enthalpy (J.kmole−1)

Δh* :

Activation enthalpy (J.kmole−1)

Δhd :

Deactivation enthalpy (J.kmole−1)

I:

Specific radiant light intensity (W.m−2)

Iλ :

Specific radiant light intensity for radiation of wavelength λ (W.m−3)

J:

Mean specific intensity (W.m−2)

Jλ :

Mean specific intensity for radiation of wavelength λ (W.m−3)

Jj :

Specific molar conversion rate of reaction j (kmole.kg DM−1.h−1)

K:

Chemical equilibrium constant for a given reaction

Ki :

Partition coefficient between liquid and gas phases (kg.m−3.Pa−1)

Ki :

Monod saturation constant for the component i (kg.m−3)

KJ :

Monod saturation constant for available radiant light energy (W.m−2)

k:

Extinction coefficient for medium only (m−1)

kj, k−j :

Direct and reverse kinetic constants for the reaction i

kJ :

Andrew inhibition constant for available radiant light energy (W.m−2)

kLa:

Volumetric coefficient of gas-liquid transfer (h−1)

L:

Total length or optical thickness of a rectangular reactor (m)

L2 :

Working illuminated length (m)

Lij :

Phenomenological coefficient (kmole2. kg DM−1.J−1.h−1)

Mi :

Molar mass of component i (kg.kmole−1)

m:

Extinction coefficient of Lambert-Beer (m2.kg−1)

ni :

Number of moles of component i inside the bioreactor (kmole)

P:

Pressure (Pa)

Pi :

Partial pressure for the component i (Pa)

p(θ, θ′, φ, φ′ or p(u, u′ or p(cosΘ):

Phase function (−)

q:

Coupling coefficient (−)

qi :

Specific mass conversion rate of component i (kg.kg DM−1.h−1)

R:

Reflexion (−)

R:

Total radius or optical thickness of a cylindrical reactor (m)

R:

Ideal gas constant (R=8.3143 J. mole−1.K−1)

R2 :

Working illuminated radius (m)

Ri:

Mass volumetric conversion rate of component i in reference to light limitation only (kg.m−3.h−1)

r:

Radius (m)

ri :

Mass volumetric conversion rate of component i (kg.m−3.h−1)

r′i :

Molar volumetric conversion rate of component i (kmole.m−3.h−1)

S:

Cross section (m2)

T:

Transmission (−)

T:

Temperature (K)

t:

Time (h)

u, u′:

Unit vector (−)

V:

Volume (m3)

V2 :

Working illuminated volume (m3)

v:

Specific photosynthesis or respiration rate (kmole.kg DM−1.h−1)

X:

Biotic state vector (kg.m−3)

x:

Generalized force ratio (−)

Y:

Abiotic state vector (kg.m−3)

Yi/j :

Global mass conversion yield of substrate i into product j (−)

yi :

molar gas fraction of component i (−)

Z:

Dimensionless length or radius (−)

Z2 :

Dimensionless working illuminated length or radius (−)

z:

Length (m)

zi :

Mass fraction of the component i (−)

〈〉=1/VvdV:

Mean volumetric integral (−)

γ:

Illuminated fraction volume (−)

η, ηth :

Thermodynamic efficiency (−)

θ, θ′, Θ:

Angle (rd)

ζ:

Proportionality coefficient (−)

ε:

Gas hold-up (−)

λ:

Wavelength (m)

μ:

Specific growth rate (h−1)

μM :

Maximum specific growth rate (h−1)

Vij :

Stoichiometric coefficient for the component i in reaction j (−)

σ:

Dissipation function of entropy (J.kgDM−1.h−1)

φ, φ′:

Angle (rd)

η:

Phenomenological stoichiometric coefficient (−)

ω, ω′, Ω, Ω′:

Solid angle (−)

\(\bar \omega _0 \) :

Albedo of single scattering=Es/(Ea+Es) (−)

ATP:

Adenosine tri-phosphate

C:

Carbohydrates or bicarbonate

CH:

Chlorophyll a

COF:

Cofactor

EPS:

Exopolysaccharide

G:

Glycogen or gas

L:

Lipids or liquid

N:

Nitrate

NA:

Nucleic acids

Pr:

Protein

PC:

Phycocyanin

P:

Phosphate

R:

Respiration

r:

r-direction

S:

Sulfate

T:

Total volume

X:

Biomass

XA:

Active biomass

XT:

Total biomass

z:

z-direction

ΦS:

Photosynthesis

E:

For the incoming flow in the reactor

′:

For molar concentration

*:

For gas-liquid equlibrium

+:

Positive direction

−:

Negative direction

PFTR:

Plug flow tubular reactor

WTR:

Well-mixed tank reactor

References

  1. Roels JA (1983) Energetics and kinetics in biotechnology. Elsevier Biomedical Press

    Google Scholar 

  2. Van Eykelenburg C (1979) Antonie van Leeuwenhoek 45: 369

    Article  Google Scholar 

  3. Ciferri O (1983) Microbiol Rev 47: 551

    CAS  Google Scholar 

  4. Clement G (1975) Nutr Rev Alim 29: 477

    CAS  Google Scholar 

  5. Fox RD (1986) Algoculture: la Spirulina, un espoir pour le monde de la faim. Edisud

    Google Scholar 

  6. Sekharam KM, Venkataraman LV, Salimath PV (1989) Food Chemistry 31: 85

    Article  CAS  Google Scholar 

  7. Cornet J-F (1992) Thesis no 1989, University of Paris XI, Orsay, France

    Google Scholar 

  8. Vincenzini M, Sili C, De Philippis R, Ena A, Materassi R (1990) J Bacteriol 172: 2791

    CAS  Google Scholar 

  9. Filali-Mouhim R, Cornet J-F, Fontaine T, Fournet B, Dubertret G (1993) Biotech Letters 15: 567

    Article  CAS  Google Scholar 

  10. Nicholls DG, Ferguson SJ (1992) Bioenergetics 2. Academic Press

    Google Scholar 

  11. Miller AG, Colman B (1980) J. Bacteriol 143: 1253

    CAS  Google Scholar 

  12. Coleman JR, Colman B (1981) Plant Physiol 67: 917

    CAS  Google Scholar 

  13. Badger MR, Andrews TJ (1982) Plant Physiol 70: 517

    CAS  Google Scholar 

  14. Kaplan A, Zenvirth D, Reinhold L, Berry JA (1982) Plant Physiol 69: 978

    CAS  Google Scholar 

  15. Volokita M, Zenvirth D, Kaplan A, Reinhold L (1984) Plant Physiol 76: 599

    CAS  Google Scholar 

  16. Badger MR, Bassett M, Comins HN (1985) Plant Physiol 77: 465

    CAS  Google Scholar 

  17. Gonzales de la Vara L, Gomez-Lojero C (1986) Photosynthesis research 8: 65

    Article  Google Scholar 

  18. Myers J, Kratz KA (1955) J Gen Physiol 39: 11

    Article  CAS  Google Scholar 

  19. Cheng KH, Colman B (1974) Planta 115: 207

    Article  CAS  Google Scholar 

  20. Lloyd NDH, Canvin DT, Culver DA (1977) Plant Physiol 59: 936

    CAS  Google Scholar 

  21. Birmingham BC, Coleman JR, Colman B (1982) Plant Physiol 69: 259

    CAS  Google Scholar 

  22. Nilsen S, Johnsen O (1982) Physiol Plant 56: 273

    Article  CAS  Google Scholar 

  23. Smith AJ (1983) Ann Microbiol 134B: 93

    CAS  Google Scholar 

  24. Carr NG, Whitton BA (1973) The biology of blue green algae. Botanical Monographs, Blackwell Scientific Publications, vol 9

    Google Scholar 

  25. Fogg GE, Stewart WDP, Fay P, Walsby AE (1973) The blue green algae. Academic Press

    Google Scholar 

  26. Carr NG, Whitton BA (1982) The biology of blue green algae. Botanical Monographs, Blackwell Scientific Publications, vol 19

    Google Scholar 

  27. Fay P, Van Baalen C (1987) The cyanobacteria. Elsevier

    Google Scholar 

  28. Dussap CG (1988) PhD Thesis, University B. Pascal, Série E, no 409, Clermont-Ferrand, France

    Google Scholar 

  29. Oura E (1983) In: Rehm HJ and Reed G (Eds) Biotechnology 3: 1

    Google Scholar 

  30. Stouthamer AH (1973) Antonie Van Leeuwenhoek 39: 545

    CAS  Google Scholar 

  31. Tremolières A (1990) CNRS-IBP Orsay. Personal communication

    Google Scholar 

  32. Zarrouk C (1966) Thesis, University of Paris, France

    Google Scholar 

  33. Lee HY (1986) Master thesis, Manhattan University, Kansas, USA

    Google Scholar 

  34. Vonshak A, Guy R, Poplawsky R, Ohad I (1988) Plant Cell Physiol 2: 721

    Google Scholar 

  35. Peschek GA (1987) In: Fay P and Van Baalen C (Eds) The Cyanobacteria. Elsevier, p 118

    Google Scholar 

  36. Chandrasekhar S (1960) Radiative transfer. Dover publications Inc.

    Google Scholar 

  37. Siegel R, Howell JR (1992) Thermal radiation heat transfer, Third edition. Hemisphere publishing corporation, USA

    Google Scholar 

  38. Corner J-F, Dussap CG, Gros J-B (1994) A.I.Ch.E. Journal 40: 1055

    Google Scholar 

  39. Aiba S (1982) Ad Biochem Eng 23: 85

    CAS  Google Scholar 

  40. Smith RA (1980) Ecological Modeling 10: 243

    Article  Google Scholar 

  41. Cosby BJ, Hornberger GM (1984) Ecological modeling 23: 1

    Article  Google Scholar 

  42. Ogawa T, Terui G (1970) J Ferm Technol 48: 361

    Google Scholar 

  43. Ogawa T, Kozasa H, Terui G (1971) J Ferm Technol 50: 143

    Google Scholar 

  44. Ten Hoopen HGJ, Roels JA, Van Gemert JM, Nobel PJ, Fuchs A (1981) In: Advances in Biotechnology, Int Ferm Symp Pergamon Press, 315

    Google Scholar 

  45. Frohlich BT, Webster JA, Attai MM, Shuler ML (1983) Biotech Bioeng Symp 13: 331

    CAS  Google Scholar 

  46. Cornet J-F, Dussap CG, Dubertret G (1992) Biotech Bioeng 40: 817

    Article  CAS  Google Scholar 

  47. Fredrickson AG, Brown AH, Miller RL, Tsuchiya HM (1961) ARS Journal 1429

    Google Scholar 

  48. Bird RB, Stewart WE, Lightfoot EN (1960) Transport phenomena. J Wiley and Sons Inc

    Google Scholar 

  49. Leifer A (1988) The kinetics of environmental aquatic photochemistry, theory and practice. ACS Professional Reference Book, USA

    Google Scholar 

  50. Spadoni G, Bandini E, Santarelli F (1978) Chem Eng Science 33: 517

    Article  CAS  Google Scholar 

  51. Cornet J-F, Dussap CG, Gros J-B, Binois C, Lasseur C (1995) Chem Eng Science 50: 1489

    Article  CAS  Google Scholar 

  52. Stramigioli C, Spiga G, Santarelli F (1982) Ind Eng Chem Fundam 21: 119

    Article  CAS  Google Scholar 

  53. Incropera FP, Thomas J-F (1978) Solar Energy 20: 157

    Article  Google Scholar 

  54. Daniel KJ, Laurendeau NM, Incropera FP (1979) ASME J Heat Transfer 101: 63

    Google Scholar 

  55. Chu CM, Churchill SW (1955) J Phys Chem 59: 855

    Article  CAS  Google Scholar 

  56. Boffi VC, Santarelli F, Stramigioli C (1977) J Quant Spectrosc Radiat Transfer 18: 189

    Article  Google Scholar 

  57. Schuster A (1905) Astrophys J 21: 1

    Article  Google Scholar 

  58. Shibata K (1958) J Biochem 45: 599

    CAS  Google Scholar 

  59. Kurata H, Furusaki S (1993) biotechnol Prog 9: 86

    Article  Google Scholar 

  60. Cornet J-F (1996) Technical note 23.4 ESA, PRF 141315 MOU ECT/FG/CB/95.205

    Google Scholar 

  61. Van de Hulst (1981) Light scattering by small particles. Dover Publications Inc.

    Google Scholar 

  62. Duntley SQ (1963) Journal Opt Soc Am 53: 214

    Google Scholar 

  63. Wyatt PJ (1968) Applied Optics 7: 1879

    CAS  Google Scholar 

  64. Göbel F (1978) Biochim Biophys Acta 588: 593

    Google Scholar 

  65. Houf WG, Incropera FP (1980) J Quant Spectrosc Radiat Transfer 23: 101

    Article  CAS  Google Scholar 

  66. Alfano OM, Negro AC, Cabrera MI, Cassano AE (1995) Ind Eng Chem Res 34: 488

    Article  CAS  Google Scholar 

  67. Cabrera MI, Alfano OM, Cassano AE (1995) Ind Eng Chem Res 34: 500

    Article  CAS  Google Scholar 

  68. Cassano AE, Martin CA, Brandi RJ, Alfano OM (1995) Ind Eng Chem Res 34: 2155

    Article  CAS  Google Scholar 

  69. Pasquali M, Santarelli F (1996) AIChE Journal 42: 532

    Article  CAS  Google Scholar 

  70. Cornet J-F, Marty A, Gros J-B (1997) Biotechnol Prog 13: 408

    Article  CAS  Google Scholar 

  71. Viskanta R, Toor JS (1972) Wat Res Research 8: 595

    Google Scholar 

  72. Pironneau O (1989) Finite element methods for fluids. J Wiley and Sons Inc.

    Google Scholar 

  73. Cornet J-F, Dussap CG, Cluzel P, Dubertret G (1992) Biotech Bioeng 40: 826

    Article  CAS  Google Scholar 

  74. Allen MM, Smith AJ (1969) Arch Microbiol 69: 114

    CAS  Google Scholar 

  75. Lau RH, Mac Kenzie MM, Doolittle FW (1977) J Bacteriol 132: 771

    CAS  Google Scholar 

  76. Yamanaka G, Glazer AN (1980) Arch Microbiol 124: 39

    Article  CAS  Google Scholar 

  77. Lehman M, Wober G (1976) Arch Microbiol 111: 93

    Article  Google Scholar 

  78. Allen MM, Hutchison F (1980) Arch Microbiol 128: 1

    Article  CAS  Google Scholar 

  79. Stevens SE, Balkwill DL, Paone DAM (1981) Arch Microbiol 130: 204

    Article  CAS  Google Scholar 

  80. Allen MM, Law A, Evans EH (1990) Arch Microbiol 153: 428

    Article  CAS  Google Scholar 

  81. Boussiba S, Richmond AE (1980) Arch Microbiol 125: 143

    Article  CAS  Google Scholar 

  82. Cohen-Bazire G, Bryant DA (1982) In: Carr NG and Whitton BA (Eds) The biology of cyanobacteria. B.A. Botanical Monographs, Blackwell Scientific Publication 19: 143

    Google Scholar 

  83. Wanner G, Henkelman G, Schmidt A, Kost HP (1986) Z Naturforsch 41: 741

    CAS  Google Scholar 

  84. Healey FP, Hendzel LL (1975) J Phycol 11: 303

    Article  CAS  Google Scholar 

  85. Curless CE (1986) Master Thesis, Manhattan University, Kansas, USA

    Google Scholar 

  86. Cornet J-F, Dussap CG, Gros J-B (1993) Technical note 19.2 ESA, PRF 130820

    Google Scholar 

  87. Lu X (1996) Master Thesis, University of Bruxels, FAME, Belgium

    Google Scholar 

  88. Tsygankov AA, Laurinavichene TV (1996) Biotech Bioeng 51: 605

    Article  CAS  Google Scholar 

  89. Okada M, Sudo R, Aiba S (1982) Biotech Bioeng 24: 143

    Article  CAS  Google Scholar 

  90. Lehman JT (1978) J Phycol 14: 33

    Article  CAS  Google Scholar 

  91. Miller AG, Turpin DH, Canvin DT (1984) Plant Physiol 75: 1064

    Article  CAS  Google Scholar 

  92. Edwards TJ, Maurer G, Newman J, Prausnitz JM (1978) AIChE Journal 24: 966

    Article  CAS  Google Scholar 

  93. Cornet J-F, Dussap CG, Gros J-B (1995) Technical note 19.4 ESA, PRF 130820

    Google Scholar 

  94. Sherwood TK, Pigford RL, Wilke CR (1975) Mass Transfer. Mc Graw Hill

    Google Scholar 

  95. Erickson LE, Curless CE, Lee Y (1987) Annals NY Academy of Sciences 308

    Google Scholar 

  96. Alberty RA, Goldberg RN (1992) Biochemistry 31: 10610

    Article  CAS  Google Scholar 

  97. Miller SL, Smith-Magowan D (1990) J Phys Chem Ref Data 19: 1049

    Article  CAS  Google Scholar 

  98. Prigogine I (1967) Thermodynamics of irreversible processes 3rd edition. Interscience publishers

    Google Scholar 

  99. Glansdorff P, Prigogine I (1971) Thermodynamic theory of structure, stability and fluctuations. J. Wiley Interscience

    Google Scholar 

  100. Walz D (1990) Biochim Biophys Acta 1019: 171

    Article  CAS  Google Scholar 

  101. Hill TL (1977) Free energy transduction in biology. Academic Press

    Google Scholar 

  102. Stucki JW (1980) Eur J Biochem 109: 269

    Article  CAS  Google Scholar 

  103. Aiba S, Ogawa T (1977) J Gen Microbiol 102: 179

    Google Scholar 

  104. Ogawa T, Aiba S (1978) J Appl Chem Biotechnol 28: 515

    CAS  Google Scholar 

  105. Ogawa T, Fujii T, Aiba S (1978) Biotech Bioeng 20: 1493

    Article  Google Scholar 

  106. Lee YK, Pirt SJ (1982) Biotech Bioeng 24: 507

    Article  CAS  Google Scholar 

  107. Aiba S, Ogawa T (1983) Biotech Bioeng 25: 2775

    Article  CAS  Google Scholar 

  108. Lee YK, Erickson LE, Yang SS (1984) Biotech Bioeng 26: 926

    Article  CAS  Google Scholar 

  109. Iehana M (1987) J Ferment Technol 65: 267

    Article  CAS  Google Scholar 

  110. Lee YK, Erickson LE, Yang SS (1987) Biotech Bioeng 29: 832

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cornet, JF., Dussap, C.G., Gros, JB. (1998). Kinetics and energetics of photosynthetic micro-organisms in photobioreactors. In: Bioprocess and Algae Reactor Technology, Apoptosis. Advances in Biochemical Engineering Biotechnology, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102299

Download citation

  • DOI: https://doi.org/10.1007/BFb0102299

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63417-1

  • Online ISBN: 978-3-540-69541-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics