Skip to main content

Fed-batch bioproduction of spectinomycin

  • Chapter
  • First Online:
Bioprocess and Algae Reactor Technology, Apoptosis

Part of the book series: Advances in Biochemical Engineering Biotechnology ((ABE,volume 59))

Abstract

Actinomycetes produce about 67% of the known antibiotics covering a wide range of chemical structures. However, their filamentous growth present several problems during industrial processes. Among these problems oxygen transfer limitation is critical. In this chapter we present the role of oxygen in spectinomycin production by a Streptomyces species. Spectinomycin, a broad spectrum antibiotic effective against penicillin resistant gonorrhea, is an aminoglycoside constituted from two glucose moieties. Its bioproduction is strongly influenced by glucose and oxygen. We have shown that for a fixed dissolved oxygen concentration, there are two specific glucose concentrations which give maximum final titers of spectinomycin. The bi-modal maximum indicates the influence of two intermediate metabolites in spectinomycin biosynthesis. We propose a mechanism for spectinomycin biosynthesis and subsequently develop a model based on this mechanism. The proposed mechanism for spectinomycin biosynthesis is validated by successfully reconstructing the air flow rate profiles. A nonlinear systems theory technique termed External Differential Representation, is implemented to reconstruct the spectinomycin bioconversion process which then predicts the spectinomycin concentration from the air flow rate profile. This signifies that spectinomycin titers in industrial fed-batch processes can be controlled if a priori information about the air flow rate profile yielding maximum spectinomycin is available.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

a:

constant for activation term

A * :

saturated dissolved oxygen concentration (gl−1)

A:

dissolved oxygen concentration (gl−1)

b:

constant for activation term

C:

cell mass concentration (gl−1)

g:

glucose concentration

Ke :

exponential model constant (gl−1)

Ke1 :

exponential model constant for product 1 (gl−1)

Ke2 :

exponential model constant for product 2 (gl−1)

Ki :

inhibition constant for Haldane-Monod or exponential structures (gl−1)

Ki1 :

inhibition constant for product 1 in exponential model (gl−1)

Ki2 :

inhibition constant for product 2 in exponential model (gl−1)

kla :

mass transfer coefficient (h−1)

Km :

Monod constant (gl−1)

P:

product concentration (gl−1)

S:

substrate concentration (gl−1)

Sf :

feed concentration (gl−1)

Tf0 :

time of glucose feed initiation (hr)

v:

volumetric air flow rate (1 min−1)

V:

volume (l)

Y:

yield coefficient [(cell mass concentration (gl−1))/(substrate concentration (gl−1))]

YCA :

yield coefficient of cell mass based on oxygen (g cell mass)/(g oxygen)

YCA :

yield coefficient of cell mass from substrate (g cell mass)/(g substrate)

YP1A :

yield coefficient of product 1 based on oxygen (g product 1)/(g oxygen)

YP2A :

yield coefficient of product 2 based on oxygen (g product 2)/(g oxygen)

YP1S :

yield coefficient of product 1 based on substrate (g product 1)/(g substrate)

YP2S :

yield coefficient of product 2 based on substrate (g product 2)/(g substrate)

FIA:

flow injection analysis

HPLC:

high pressure liquid chromatography

PHB:

poly-β-hydroxybutyric

GC:

gas chromatography

EDR:

external differential representation

OUR:

oxygen uptake rate

α:

activation term

μ:

specific growth rate (Monod Kinetics) (h−1)

\(\hat \mu \) :

medium viscosity

μ m :

maximum specific growth rate

Σ:

summation

ρ:

density (g ml−1) medium viscosity

References

  1. Martin JF, Demain AL (1980) Microbiol Rev 44: 230

    CAS  Google Scholar 

  2. Lilley G, Rowley BI, Bull AT (1974) J Appl Chem Biotechnol 24: 677

    CAS  Google Scholar 

  3. Gray PP, Bhuwapathanapun S (1980) Biotechnol Bioeng 22: 1785

    Article  CAS  Google Scholar 

  4. Hirsch CF (1981) In: Schlessinger D (ed) Regulation of secondary metabolism in microorganisms, Am Soc Microbiol, Washington DC

    Google Scholar 

  5. Aharonowitz Y (1980) Ann Rev Microbiol 34: 209

    Article  CAS  Google Scholar 

  6. Aharonowitz Y, Demain AL (1979) Can J Microbiol 25: 61

    Article  CAS  Google Scholar 

  7. Demain AL, Kennel YM, Aharanowitz Y (1979) Symp Soc Gen Microbiol 29: 163

    CAS  Google Scholar 

  8. Basak K, Majumdar SK (1973) Antimicrob Agents, Chemother 4: 6

    CAS  Google Scholar 

  9. Weinberg ED (1977) In: Weinberg ED (ed) Mineral element control of microbial secondary metabolism, Microorganisms and minerals, Marcell Dekker, New York

    Google Scholar 

  10. Kominek LA (1972) Antimicrob Agents, Chemother 7: 856

    Google Scholar 

  11. Pirt SJ, Righelato RC (1967) Appl Microbil 15: 1284

    CAS  Google Scholar 

  12. Righelato RC, Trinci APJ, Pirt SJ, Peak A (1968) J Gen Microbiol 50: 399

    CAS  Google Scholar 

  13. Pla LC (1971) Biochim Biophys Acta 242: 541

    Google Scholar 

  14. Martin JF (1977) Adv Biochem Eng 6: 105

    CAS  Google Scholar 

  15. Martin JF, Demain AL (1977) J Bacteriol 132: 590

    CAS  Google Scholar 

  16. Atkinson DE, Walton GM (1967) J Biol Chem 242: 3239

    CAS  Google Scholar 

  17. Chapman AG, Fall L, Atkinson DE (1971) J Bacteriol 108: 1072

    CAS  Google Scholar 

  18. Fynn GH, Davison JA (1976) J Gen Microbiol 94: 68

    CAS  Google Scholar 

  19. Purich DL, Fromm HJ (1973) J Biol Chem 25: 461

    Google Scholar 

  20. Martin JF, Liras P, Demain AL (1978) Biochem Biophys Res Commun 83: 822

    Article  CAS  Google Scholar 

  21. Mitscher LA, Martin LL, Feller DR, Martin JR, Goldstein AW (1971) Chem Commun 1541

    Google Scholar 

  22. Otsuka H, Mascaretti OA, Hurley LH, Floss HG (1980) J Am Chem Soc 102: 6817

    Article  CAS  Google Scholar 

  23. Oliver TJ, Goldstein A, Bower RR, Holper JC, Otto RH (1961) Antimicrob Agents Chemother 495

    Google Scholar 

  24. Mason DJ, Dietz A, Smith RM (1961) Antibiot Chemother 11: 118

    CAS  Google Scholar 

  25. Wallace BJ, Tai PC, Davis BD (1974) Proc Nat Acad Sci USA 71: 1634

    Article  CAS  Google Scholar 

  26. Wiley PF (1962) J Am Chem Soc 84: 1514

    Article  CAS  Google Scholar 

  27. Hoeksema H, Argoudelis AD, Wiley PF (1962) J Am Chem Soc 84: 5212

    Article  Google Scholar 

  28. Wiley PF, Argoudelis AD, Hoeksema H (1963) J Am Chem Soc 85: 2652

    Article  Google Scholar 

  29. Mansouri S, Schultz JS (1984) Bio/Technology 2: 885

    Article  CAS  Google Scholar 

  30. Phelps MR, Hobbs JB, Kilburn DG, Turner RFB (1995) Biotechnol Bioeng 46: 514

    Article  CAS  Google Scholar 

  31. Xie X, Suleiman AA, Guilbault GG (1992) Biotechnol Bioeng 39: 147

    Article  Google Scholar 

  32. Park JK, Shin MC, Lee SG, Kim HS (1995) Biotechnol Prog 11: 58

    Article  CAS  Google Scholar 

  33. Karube I (1984) Biotechnol Genet Eng Rev 2: 313

    CAS  Google Scholar 

  34. Watanabe E, Takagi M, Takei S (1991) Biotechnol Bioeng 38: 99

    Article  CAS  Google Scholar 

  35. Riedel K, Renneberg R, Wollenberger U, Kaiser G, Scheller FW (1989) J Chem Tech 44: 85

    Article  CAS  Google Scholar 

  36. Leech D (1994) Chem Soc Rev 23: 205

    Article  CAS  Google Scholar 

  37. Royce PN (1993) Crit Rev Biotechnol 13: 117

    CAS  Google Scholar 

  38. Heinzle E (1992) J Biotechnol 25: 81

    Article  CAS  Google Scholar 

  39. Christensen LH, Schulze U, Nielsen J, Villadsen J (1995) Chem Eng Sci 50: 2601

    Article  CAS  Google Scholar 

  40. Sipior J, Eichhorn LR, Lakowicz JR, Carter GM, Rao G (1996) Biotechnol Prog 12: 266

    Article  CAS  Google Scholar 

  41. Brown LW, Bowman PB (1974) J Chromatogr Sci 12: 373

    CAS  Google Scholar 

  42. Wills PJ, Wise R (1978) J Antimicrob Chemother 4: 279

    Google Scholar 

  43. Borowiecka B, Chojnowski W, Pajchel G (1984) Acta Polon Pharm 61: 195

    Google Scholar 

  44. Myers HN, Rindler JV (1979) J Chromatogr 176: 103

    Article  CAS  Google Scholar 

  45. Tsuji K, Jenkins KM (1985) J Chromatogr 333: 365

    Article  CAS  Google Scholar 

  46. Hanka LJ, Mason DJ, Sokolski WT (1961) Antibiot Chemother 11: 123

    CAS  Google Scholar 

  47. Hwang K, Coen L, Johnson HE, Hunter WW, Cugier P (1961) Antimicrob Agents Chemother 507

    Google Scholar 

  48. Menawat AS (1988) Abbott internal report

    Google Scholar 

  49. Gomes J, Menawat AS (submitted for publication)

    Google Scholar 

  50. Gomes J (1993) Ph.D. Thesis, Tulane University, New Orleans

    Google Scholar 

  51. Gomes J, Menawat AS (1992) Biotechnol Prog 8: 118

    Article  CAS  Google Scholar 

  52. van der Schaft AJ (1989) Systems Control Lett 12: 151

    Article  Google Scholar 

  53. Boothby WM (1975) An introduction to differentiable manifolds and riemannian geometry, Academic Press, New York

    Google Scholar 

  54. Casti JL (1985) Nonlinear system theory, Academic Press, New York

    Google Scholar 

  55. Warner FW (1983) Foundations of differentiable manifolds and lie groups, Springer-Verlag, New York

    Google Scholar 

  56. Isidori A (1989) Nonlinear control systems—An Introduction, 2nd edn. Springer-Verlag, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gomes, J., Menawat, A.S. (1998). Fed-batch bioproduction of spectinomycin. In: Bioprocess and Algae Reactor Technology, Apoptosis. Advances in Biochemical Engineering Biotechnology, vol 59. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102295

Download citation

  • DOI: https://doi.org/10.1007/BFb0102295

  • Received:

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-63417-1

  • Online ISBN: 978-3-540-69541-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics