Skip to main content

Biotechnology for solving slime problems in the pulp and paper industry

  • Chapter
  • First Online:
Biotechnology in the Pulp and Paper Industry

Part of the book series: Advances in Biochemical Engineering/Biotechnology ((ABE,volume 57))

Abstract

Biotechnology for Solving Slime Problems in the Pulp and Paper Industry includes the following topics: biofilms, glycocalyx; microbial extracellular polysaccharides; organisms within the slime; slime control, biocides, cleaning; surface-active agents in slime control, synthetic surfactants, biosurfactants, alternative biocide-free growth control methods, enzymatic slime deposit control, bacteriophages, introduction of competing micro-organisms; biological equilibrium; and biodispersants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hoyle BD, Jass J, Costerton JW (1990) J Antimicrobiol Chemotherapy 26: 1

    CAS  Google Scholar 

  2. Appling JW (1955) Slimes in Mill Systems and their Control. In: Microbiology of Pulp and Paper, TAPPI Monograph Series No. 15, p 97

    Google Scholar 

  3. Jung WK (1978) Das Papier 32: 550

    Google Scholar 

  4. Holt DM (1987) Microbiology of paper and board manufacture. In: DR Houghton et al. (eds) Biodeterioration vol 7: 493. Elsevier, London

    Google Scholar 

  5. Hughes-van Kregten MC (1988) Appita 41: 470

    Google Scholar 

  6. Väätänen P, Niemelä SI (1983) J Appl Bacteriol 54: 367

    Google Scholar 

  7. Lawrence JR, Wolfaardt GM, Korber DR (1994) Appl Environ Microbiol 60: 1166

    Google Scholar 

  8. Väisänen OM, Nurmiaho-Lassila EL, Marmo SA, Salkinoja-Salonen MS (1994) Appl Environ Microbiol 60: 641

    Google Scholar 

  9. Stoner MT, King VM (1994) Industrial biofilms: an overview. Biological Sciences Symp Tappi Proc: 185

    Google Scholar 

  10. Mueller RF (1994) Biofilm formation in water systems and their industrial relevance. Biological Sciences Symp Tappi Proc: 195

    Google Scholar 

  11. Wiatr CL (1994) Development of biofilms. Biological Sciences Symp Tappi Proc: 203

    Google Scholar 

  12. Latorre WC, Canales CYG, Zimmer C, Gallardo VRB (1991) On-line monotoring of biofouling in paper machines. In: HW Rossmoore (ed) Biodeterioration and biodegradation 8. Elsevier, London, p 370

    Google Scholar 

  13. Marmo SA, Nurmiaho-Lassila E-L, Varjonen O, Salkinoja-Salonen MS (1991) Biofouling and microbially induced corrosion on paper machines. In: NJ Dowling, MW Mittelman, JC Danko (eds) Microbially influenced corrosion and biodeterioration. Univ. of Tennessee Press, Knoxville, p 4.33

    Google Scholar 

  14. Nurmiaho-Lassila E-L, Lehtinen SA, Marmo SA, Salkinoja-Salinen MS (1990) Electron microscopial analysis of biological slimes on paper and board machines. Inst Phys Conf Ser IOP, London, No. 98: 727

    Google Scholar 

  15. Nagy LA, Olson BH (1986) Zbl Bact Hyg B182: 478

    CAS  Google Scholar 

  16. Eveleigh DE, Brewer D (1964) Can J Bot 42: 35

    Google Scholar 

  17. Brown MRW, Gilbert P (1993) J Appl Bacteriol Symp Suppl 74: 87

    Google Scholar 

  18. Srinivasan R, Stewart PS, Griebe T, Chen C-I, Xu X (1995) Biotech Bioeng 46: 553

    Article  CAS  Google Scholar 

  19. Costerton JW, Cheng K-J, Geesey GG, Ladd T1, Nickel JC, Dasgupta M, Marrie TJ (1987) Annu Rev Microbiol 41: 435

    Article  CAS  Google Scholar 

  20. LeChevalier MW, Cawthon CD, Lee RG (1988) Appl Environ Microbiol 54: 2492

    Google Scholar 

  21. Nichols WW (1989) Susceptibility of biofilms to toxic compounds. In: WG Characklis, PA Wilderer (eds) Structure and function of biofilms, Wiley, Chichester, UK, p. 321

    Google Scholar 

  22. Brock TD, Madigan MT (1991) Biology of microorganisms. Sixth edn. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  23. Sutherland IW (1972) Adv Microbiol Physiol 8:143

    CAS  Google Scholar 

  24. Sutherland IW (1977) Bacterial exopolysaccharides—their nature and production. In: IW Sutherland (ed) Surface carbohydrates of the prokaryotic cell. Academic Press, New York, p 27

    Google Scholar 

  25. Costerton JW, Geesey GG, Cheng K-J (1978) Sci Am 238: 86

    Article  CAS  Google Scholar 

  26. Corpe WA (1980) Microbial surface components involved in adsorption of microorganisms onto surfaces. In: G. Bitton and KC Marshall (eds) Adsorption of microorgansisms to surfaces. Wiley, New York, p 105

    Google Scholar 

  27. Dudman WF (1977) The role of surface polysaccharides in natural environments. In: I Sutherland (ed) Surface carbohydrates of the prokaryotic cell. Academic Press, New York, pp 357–414

    Google Scholar 

  28. Dedonder R (1966) Methods Enzymol 8: 500

    CAS  Google Scholar 

  29. Tanaka T, Susumu O, Yamamoto T (1979) J Biochem 85: 287

    CAS  Google Scholar 

  30. Han YW, Clarke MA (1990) J Agric Food Chem 38: 393

    Article  CAS  Google Scholar 

  31. Hestrin S, Avineri-Shapiro S, Aschner M (1943) Biochem J 37: 450

    CAS  Google Scholar 

  32. Corrigan A, Robyt JF Infect Immun 26: 387

    Google Scholar 

  33. Dias F, Bhat V (1962) Antonie Van Leeuwenhoek, 63

    Google Scholar 

  34. Evans TH, Hibbert H (1946) Bacterial polysaccharides. Adv Carbohydr Chem 2: 253

    Google Scholar 

  35. Fuchs A (1956) Nature 178: 921

    Article  CAS  Google Scholar 

  36. Ward JB, Berkeley RCW (1980) The microbial cell surface and adhesion. In: RCW Berkeley, JM Lynch, J Mellin, PR Rutter, B Vincent (eds) Wiley, UK

    Google Scholar 

  37. Stanier Ry, Doudoroff M, Adelberg EA (eds) (1968) General microbiology, 2nd edn, Chap 17: 393

    Google Scholar 

  38. Eighmy TT, Maratea D, Bishop PL (1983) Appl Environ 45: 1921

    CAS  Google Scholar 

  39. Ferris FG, Fyfe WS, Witten T, Schultze S, Beveridge TJ (1989) Can J Microbiol 35: 744

    Article  Google Scholar 

  40. Ford TE, Walch M, Mitchell R, Kaufman MJ, Vestal JR, Ditner SA, Lock MA (1989) Biofouling 1: 301

    CAS  Google Scholar 

  41. Jacques M, Marrie TJ, Costerton JW (1987) Microb Ecol 13: 173

    Article  Google Scholar 

  42. Lappin-Scott HM, Costerton JW (1989) Biofouling 1: 323

    CAS  Google Scholar 

  43. Ridgway HF, Kelly A, Justice C, Olson BH (1983) Appl Environ Microbiol 45: 1066

    CAS  Google Scholar 

  44. Eveleigh DE, Brewer D (1965) Can J Bot 43: 519

    Google Scholar 

  45. Geesey GC, Costerton JW (1986) The microphysiology of consortia within adherant bacterial populations. In: F. Megusar and M. Gantar (eds) Perspectives in microbial ecology. Mladinska Knjiga, Ljubljana, Slovenia, p 238

    Google Scholar 

  46. Turner JN (1953) Assoc Proc Tech Sec 34: 475

    Google Scholar 

  47. Shema BF (1955) Microbiology of pulp and paper. II. The microbiology of pulpwood. Tappi Monograph Series No. 15 p. 28

    Google Scholar 

  48. Brewer D (1959) Can J Bot 37: 517

    Google Scholar 

  49. Humiston CG (1955) Microbiology of pulp and paper VII. Deterioration of coatings, sizes and adhesives. Tappi Monograph Series No. 15 p 157

    Google Scholar 

  50. Martin RB (1955) Microbiology of pulp and paper. III. Microbiology of fresh water. Tappi Monograph Series No. 5 p 55

    Google Scholar 

  51. Characklis WG, Marsall KC (1990) Biofilm: A basis for an interdisciplinary approach. In: WG Characklis and KC Marsall (eds) Biofilms, Wiley, New York p 3

    Google Scholar 

  52. Nason HK, Shumard RS, Flemming JD (1940) Tappi 23: 337

    Google Scholar 

  53. Strachan J (1947) Paper-Maker 114 TS 41–42: 48

    Google Scholar 

  54. Melin E, Nannfeldt JA (1934) Svenska Skogsvårdsfören. Tidskrift 32, 397

    Google Scholar 

  55. Pehrson SO (1947) Svensk Papperstidn. 50: 497

    CAS  Google Scholar 

  56. Prendergast AG (1948) Paper-Maker 116 TS 21–26

    Google Scholar 

  57. Lutey RW (1972) Microbial deposit control. Tappi Papermakers Conf, Atlanta, June 5–8, p 133

    Google Scholar 

  58. Eveleigh DE, Brewer D (1963) Can J Bot 41: 1377

    CAS  Google Scholar 

  59. Purkiss BE (1970) Paperi puu 52: 207

    CAS  Google Scholar 

  60. Väisänen OM, Nurmiaho-Lassila SA, Marmo SA, Salkinoja-Salonen MS (1994) Appl Environ Microbiol, 60: 641

    Google Scholar 

  61. Brewer D (1958) Can J Bot 36: 941

    Google Scholar 

  62. Brewer D (1959) Can J Bot 37: 339

    Article  Google Scholar 

  63. Brewer D (1960) Tappi 43: 609

    Google Scholar 

  64. Sanborn JR (1965) Paper Trade Journal (Feb. 15): 42

    Google Scholar 

  65. Postgate JR (1979) The sulphate-reducing bacteria Cambridge University Press, Cambridge, UK

    Google Scholar 

  66. Hamilton WA (1985) Annu Rev Microbiol 39: 195

    Article  CAS  Google Scholar 

  67. Robichaud WT (1991) Tappi J Feb 1991: 149

    Google Scholar 

  68. Simajärvi JM, Pursiainen M, Korhonen J (1978) J Appl Microbiol Biotechnol 5: 87

    Article  Google Scholar 

  69. Piluso A (1972) Paper Trade Journal 156: 46

    CAS  Google Scholar 

  70. Iversson WP (1987) Adv Appl Microbiol 32: 1

    Google Scholar 

  71. Piluso AJ (1977) Southern Pulp and Paper Manufacturer 40: 14

    CAS  Google Scholar 

  72. Möbius CH, Demel I, Garhammer J, Lottes K (1986) Das Papier 40: 242

    Google Scholar 

  73. McCoy JW (1980) Microbiology of cooling water. Chemical Publishing, New York, p 73

    Google Scholar 

  74. Paulus W (1993) Microbicides for the protection of materials. A handbook. Chapman and Hall

    Google Scholar 

  75. Eriksson U, Johnson A, Törnlund M (1995) Risk assessment of slimicides. KEM1 Report No. 9/95. The Swedish National Chemicals Inspectorate

    Google Scholar 

  76. Cooper DG (1986) Biosurfactants. Microbiol Sci vol 3 No. 5, 145

    CAS  Google Scholar 

  77. Tadros TF ed. (1984) Surfactants. Academic Press, London

    Google Scholar 

  78. Swisher RD (1970) Surfactant biodegradation. Surfactant Science Series vol 3. Marcel Dekker, New York

    Google Scholar 

  79. Rosenberg E (1986) Microbial surfactants. Critical Reviews in Biotechnology 3: 109

    Article  CAS  Google Scholar 

  80. Arima K, Kakinuma A, Tamura G (1968) Biochem Biophys Res Commun 31: 488

    Article  CAS  Google Scholar 

  81. Kluge B, Vater J, Salkinow Eckart K (1989) FEBS Lett 231: 107

    Article  Google Scholar 

  82. Morikawa M, Ito M, Imanaka T (1992) Ferment Bioeng 74: 255

    Article  CAS  Google Scholar 

  83. Laycock MV, Hildebrand PD, Thibault P, Walter JA, Wright JCL (1991) J Agric Food Chem 39: 483

    Article  CAS  Google Scholar 

  84. Morikawa M, Daido H, Takao T, Murata S, Shimonishi Y, Imanaka T (1993) J Bacteriol 175: 6459

    CAS  Google Scholar 

  85. Kameda Y, Ouhira S, Matsui K, Kanatomo S, Hase T, Atsusaka T (1974) Chem Pharm Bull 22: 938

    CAS  Google Scholar 

  86. Yakimov MM, Timmis KN, Wray V, Fredrickson HL (1995) Appl Environ Microbiol 61: 1706

    CAS  Google Scholar 

  87. Reisfeld A, Rosenberg E, Gutnick D (1972) Appl Environ Microbiol 24: 363

    CAS  Google Scholar 

  88. Rosenberg E, Schwartz Z, Tenebaum A, Rubinovitz C, Legmann R, Ron EZ (1989) J Dispers Sci Technol 10: 241

    CAS  Google Scholar 

  89. Elkeles A, Rosenberg E, Ron EZ (1994) Appl Environ Microbiol 60: 4642

    CAS  Google Scholar 

  90. Shabtai Y (1990) Int J Biol Macromol 12: 145

    Article  CAS  Google Scholar 

  91. Bryers JD (1990) Biofilms in biotechnology. In WG Characklis and KC Marshall (ed) Biofilms. Wiley, New York, p. 733

    Google Scholar 

  92. Layman PL (1985) Chem Eng News 63: 23

    Google Scholar 

  93. Hatcher HJ et al. US Pat 3 773 623 20 Nov 1973

    Google Scholar 

  94. Hatcher HJ et al. US Pat 3 824 184 16 July 1974

    Google Scholar 

  95. Hatcher HJ, Pedersen DE US Pat 4 684 469 4 Aug 1987

    Google Scholar 

  96. Harju-Jeanty PA FRG Pat 3741583 23 June 1988

    Google Scholar 

  97. Orndorff SA US Pat 4 370 199 25 Jan 1983

    Google Scholar 

  98. Christensen RJ, Zivtins GJ US Pat 4 055 467 25 Oct 1977

    Google Scholar 

  99. Wiatr C US Pat 4 936 994 26 June 1990

    Google Scholar 

  100. Johnson KA, Hatcher H, Pote WD (1981) Paper Age 17: 10

    Google Scholar 

  101. Moor AH, Hatcher HJ (1984) Enzyme to control microbiological deposits. PIRA Conf Slime and its control SPB/3, January 1984

    Google Scholar 

  102. Colasurdo AR, Wilton J Jr (1988) Pulp and Paper January 89: 93

    Google Scholar 

  103. Parshikov IA, Bol'shova NI, Simonova LN, Parshikova VV (1988) Formation of levan by bacteria at the Kondopoga Pulp and Paper Mill (USSR). Sb Tr TsNIIB, Orekhov BV (ed) Khimiya bumagi, p 113

    Google Scholar 

  104. Grussenmeyer H, Wollenweber H-W (1992) Wochbl Papierfabr 22: 915

    Google Scholar 

  105. Fletcher M (1987) Microbiologica Sciences vol 4 no 5

    Google Scholar 

    Google Scholar 

  106. Brock TD (1966) Principles of microbiol ecology. Prentice Hall, Englewood Cliffs, NJ p 133

    Google Scholar 

  107. Brock TD, Madigan MT (1991) Chap 6 Viruses. In: Biology of microorganisms, 6th edn. Prentice Hall, Englewood Cliffs, NJ, p 181

    Google Scholar 

  108. Kamimura K, Araki M (1984) Control of microbiofouling formed on the heat exchanger by bacteriophage. In: Proc. Pacific Congress on Marine Technology (NRM2/40-46) Honolulu

    Google Scholar 

  109. Government Industrial Research Institute (GIRIC), Chugoku US Pat 4 778 653 18 Oct 1988

    Google Scholar 

  110. Väätänen P, Harju-Jeanty P (1986) New Microbiological method for controlling harmful bacteria in papermaking. Eng Meeting Info: STFI/SPCI 3rd Int. Conf. Biotechnol Pulp and Paper Ind Stockholm, June 1986

    Google Scholar 

  111. Araki M, Hosomi M (1990) Tappi J Vol 73: 155

    CAS  Google Scholar 

  112. Waksman SA (1947) Microbial antagonisms and antibiotic substances. Commonwealth Fund, New York

    Google Scholar 

  113. Oberkofler J, Braunsperger F (1994) Chemical-free slime control in white-water circuits of paper machines. 11th PTS Symposium on Chemical Technology of Papermaking. Munich, Sept 1994

    Google Scholar 

  114. Oberkofler et al. US Pat 5 242 593 7 Sept 1993

    Google Scholar 

  115. Norén PO US Pat 4 532 007 85-07-30

    Google Scholar 

  116. Oberkofler J (1989) Wochbl Papierfab 117: 920

    Google Scholar 

  117. Gavelin G (1996) Pulp Paper Eur March 1996

    Google Scholar 

  118. Schenker AP (1996) Svensk Papperstidn/Nordisk Cellulosa no. 1

    Google Scholar 

  119. Stenquist B (1992) Svensk Papperstidn/Nordisk Cellulosa no. 7

    Google Scholar 

  120. Robertson LR, Taylor NR (1994) Tappi J 77: 99

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

K. -E. L. Eriksson (Volume Editor)W. Babel H. W. Blanch Ch. L. Cooney S. -O. Enfors K. -E. L. Eriksson A. Fiechter A. M. Klibanov B. Mattiasson S. B. Primrose H. J. Rehm P. L. Rogers H. Sahm K. Schügerl G. T. Tsao K. Venkat J. Villadsen U. von Stockar C. Wandrey

Rights and permissions

Reprints and permissions

Copyright information

© 1997 Springer-Verlag 0110 D112 V 2

About this chapter

Cite this chapter

Johnsrud, S.C. (1997). Biotechnology for solving slime problems in the pulp and paper industry. In: Eriksson, K.E.L., et al. Biotechnology in the Pulp and Paper Industry. Advances in Biochemical Engineering/Biotechnology, vol 57. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102079

Download citation

  • DOI: https://doi.org/10.1007/BFb0102079

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61868-3

  • Online ISBN: 978-3-540-70702-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics