Skip to main content

Universal properties of multilayer high-temperature superconductors: Transition, temperature and a spatial modulation of the gap

  • Conference paper
  • First Online:
  • 146 Accesses

Part of the book series: Lecture Notes in Physics ((LNP,volume 475))

Abstract

We discuss a three-dimensional model high-temperature superconductor, which encompasses both mono- and multilayer systems as planar non-Fermi liquids. Explicitly, we derive the analytic formulae for the superconducting transition temperature T c and for the shape of the space profile of the gap for a material composed of a periodic arrangement of CuO2 planes divided into groups of p≥1 tightly spaced planes. The results are compared with experiment and provide strong support for an interlayer Cooper-pair hopping between the planes as the source of the large T c enhancement in multilayer compounds. Our results are universal in the sense that only general properties of the in-plane pairing potential V kk′ are required to derive them. The results are applicable to both Landau and nonLandau fermionic liquids such as spin-charge separated (Luttinger) and statistical-spin liquids, each of which is also characterized briefly.

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Burns, “High-Temperature Superconductivity—an Introduction”, (Academic Press, New York 1992); see also: Physica C 235–240 (1994).

    Google Scholar 

  2. ZX. Shen and D.S. Dessau, Phys. Repts. 235, 1–162 (1995); K.J. Gofron, Ph.D. Thesis, Univ. of Illinois at Chicago, 1993 (unpublished).

    Article  ADS  Google Scholar 

  3. C.M. Varma, P.B. Littlewood, S. Schmitt-Rink, E. Abrahams, and A.E. Ruckenstien, Phys. Rev. Lett. 63, 1996 (1989); for discussion within the Fermi liquid theory context see: N. Mitani and S. Kurihara, Physica C 192, 230 (1992).

    Article  ADS  Google Scholar 

  4. A. Virtoszek and J. Ruvalds, Phys. Rev. B 42, 4064 (1990).

    Article  ADS  Google Scholar 

  5. D. Pines, these Proceedings.

    Google Scholar 

  6. P.W. Anderson and Y. Ren, in: “High Temperature Superconductivity”, ed. by K. Bedell et al. (Addison-Wesley, New York 1990) pp. 3–33; P.W. Anderson, Science 256, 1526 (1992).

    Google Scholar 

  7. P.W. Anderson, Physica B 199&200, 8 (1994); S.Chakravaty, S.Sudbo, P.W. Anderson, and S.P.Strong, Science 261, 337 (1993).

    Article  Google Scholar 

  8. C. Nayak and F. Wilczek, Nucl. Phys. B 417, 359 (1994)

    Article  ADS  Google Scholar 

  9. K. Byczuk and J. Spalek, Phys. Rev. B 51, 7934 (1995)

    Article  ADS  Google Scholar 

  10. K. Byczuk and J.Spalek, submitted for publication (1995).

    Google Scholar 

  11. K.Byczuk and J.Spalek, Phys. Rev. B 53, in press (1996).

    Google Scholar 

  12. A. Houghton and J.B. Marston, Phys. Rev. B 48, 7990 (1993); A. Houghton, H.J. Kwon, and J.B. Marston, Phys. Rev. B 50, 1351 (1994).

    Article  ADS  Google Scholar 

  13. F.D.M. Haldane, Proc. Int. School of Physics “Enrico Fermi”, Course 121, Varenna 1992, ed.by R. Schrieffer et al. (North-Holland, Amsterdam 1994), p. 5.

    Google Scholar 

  14. Y. Ren and P.W. Anderson, Phys. Rev. B 48, 16662 (1993); M. Fabrizio and A. Parola, Phys. Rev. Lett. 70, 226 (1993).

    Article  ADS  Google Scholar 

  15. A. Sudbo, J. Low. Temp. Phys. 97, 403 (1994); see also: S.P. Kruchinin, Mod. Phys. Lett. 9, 379 (1995); T. Schneider, Z.Gedlik, and Z. Ciraci, Europhys. Lett. 14, 261 (1991).

    Article  ADS  Google Scholar 

  16. A. Sudbo, Phys. Rev. Lett. 74, 2575 (1995) (we consider here the situation with an anomalous exponent α=0 only, i.e. the spin-charge separated liquid with a Fermi liquid scaling).

    Article  ADS  Google Scholar 

  17. J. Spalek and W. Wojcik, Phys. Rev. B 37, 1532 (1988); J. Spalek, Physica B 163, 621 (1990); For a review see: K. Byczuk, J.Karbowski, J.Spalek, and W.Wójcik, “Superconductivity and Strongly Correlated Electron Systems”, ed. by C. Noce et al. (World Sci., Singapore 1994).

    Article  ADS  Google Scholar 

  18. These boundary conditions do not reflect the situation when the surface layer is perturbed, i.e. oxidized to a different degree. Then we may have in the extreme cases either a normal (dead) surface layer or surface superconductivity. The ratio 2Δ/k B T c depends always on the layer number.

    Google Scholar 

  19. V.N. Muthukumar, Deabanad Sa, and M. Sadar, Phys. Rev. B 52, 9647 (1995).

    Article  ADS  Google Scholar 

  20. J. Spalek, Phys. Rev. B 37, 533 (1987).

    Article  ADS  Google Scholar 

  21. P.A. Lee and N. Nagaosa, Phys. Rev. B 46, 5261 (1992); M.U. Ubens and P. Lee, Phys. Rev. B 50, 438 (1994); ibid., Phys. Rev. B 49, 6852 (1994).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Jan Klamut Boyd W. Veal Bogdan M. Dabrowski Piotr W. Klamut

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer-Verlag

About this paper

Cite this paper

Spałek, J., Byczuk, K. (1996). Universal properties of multilayer high-temperature superconductors: Transition, temperature and a spatial modulation of the gap. In: Klamut, J., Veal, B.W., Dabrowski, B.M., Klamut, P.W. (eds) Recent Developments in High Temperature Superconductivity. Lecture Notes in Physics, vol 475. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0102033

Download citation

  • DOI: https://doi.org/10.1007/BFb0102033

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-61631-3

  • Online ISBN: 978-3-540-70695-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics