Advertisement

Quantum Groups pp 373-388 | Cite as

Yang-Baxter relation, exactly solvable models and link polynomials

  • Miki Wadati
  • Tetsuo Deguchi
  • Yasuhiro Akutsu
III. Quantum Groups, Low-Dimensional Topology And Link Invariants
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)

Abstract

Presented is a general theory to construct link polynomials, topological invariants for knots and links, from exactly solvable (integrable) models. Representations of the braid group and the Markov traces on the representations are made through the general theory which is based on fundamental properties of exactly solvable models. Various examples including Alexander, Jones, Kauffman and a hierarchy of link polynomials are explicitly shown.

Keywords

Solvable Model Braid Group Jones Polynomial Vertex Model Reidemeister Move 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    C.D. Yang, Phys.Rev.Lett. 19 (1967), 1312.MathSciNetCrossRefGoogle Scholar
  2. [2]
    R.J. Baxter, Ann.of Phys. 70 (1972), 323.MathSciNetCrossRefGoogle Scholar
  3. [2]a
    R.J.Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, 1982.Google Scholar
  4. [3]
    L.D. Faddeev, Sov.Sci.Rev. C1 (1980), 107.Google Scholar
  5. [4]
    P.P. Kulish and E.K. Sklyanin, Lect. Notes Phys. 151, (1982), 61.MathSciNetCrossRefGoogle Scholar
  6. [5]
    H.B. Thacker, Rev.Mod.Phys. 53 (1981), 253.MathSciNetCrossRefGoogle Scholar
  7. [6]
    M. Wadati, Dynamical Problems in Soliton Systems (S. Takeno, eds.), Springer, Berlin, 1985, p. 68.CrossRefGoogle Scholar
  8. [7]
    L.A. Takhtadzhan and L.D. Faddeev, Russian Math.Surveys 34 (1979), 11.CrossRefGoogle Scholar
  9. [8]
    J.W. Alexander, Trans.Amer.Math.Soc. 30 (1928), 275.MathSciNetCrossRefGoogle Scholar
  10. [9]
    V.F.R. Jones, Bull.Amer.Math.Soc. 12 (1985), 103.MathSciNetCrossRefGoogle Scholar
  11. [10]
    P. Freyd, D. Yetter, J. Hoste, W.B.R. Liskorish, K. Millett and A. Ocneanu, Bull.Amer.Math.Soc. 12 (1985), 239.MathSciNetCrossRefGoogle Scholar
  12. [11]
    J.H. Przytycki and K.P. Traczyk, Kobe Univer. Math. J. 4 (1987), 115.MathSciNetGoogle Scholar
  13. [12]
    L.H.Kauffman, On Knots, Princeton University Press, 1987; Trans.Amer.Math.Soc. 318 (1990), 417.Google Scholar
  14. [13]
    Y. Akutsu and M. Wadati, J.Phys.Soc.Jpn. 56 (1987), 839; 3039.MathSciNetCrossRefGoogle Scholar
  15. [14]
    Y. Akutsu, T. Deguchi and M. Wadati, J.Phys.Soc.Jpn. 56 (1987), 3464.MathSciNetCrossRefGoogle Scholar
  16. [15]
    Y. Akutsu and M. Wadati, Commun.Math.Phys. 117 (1988), 243.MathSciNetCrossRefGoogle Scholar
  17. [16]
    T. Deguchi, Y. Akutsu and M. Wadati, J.Phys.Soc.Jpn. 57 (1988), 757.MathSciNetCrossRefGoogle Scholar
  18. [17]
    Y. Akutsu, T. Deguchi and M. Wadati, J.Phys.Soc.Jpn. 57 (1988), 1173.MathSciNetCrossRefGoogle Scholar
  19. [18]
    T. Deguchi, M. Wadati and Y. Akutsu, J.Phys.Soc.Jpn. 57 (1988), 1905.MathSciNetCrossRefGoogle Scholar
  20. [19]
    T. Deguchi, M. Wadati and Y. Akutsu, J.Phys.Soc.Jpn. 57 (1988), 2921.MathSciNetCrossRefGoogle Scholar
  21. [20]
    M. Wadati and Y. Akutsu, Progr.Theor.Phys.Suppl. 94 (1988), 1.MathSciNetCrossRefGoogle Scholar
  22. [21]
    Y.Akutsu, T.Deguchi and M.Wadati, Braid Group, Knot Theory and Statistical Mechanics (C.N.Yang and M.L.Ge, eds.), World Scientific, 1989, p. 151.Google Scholar
  23. [22]
    M. Wadati, T. Deguchi and Y. Akutsu, Phys.Reports 180 (1989), 427.MathSciNetCrossRefGoogle Scholar
  24. [22]a
    T. Deguchi, M. Wadati and Y. Akutsu, Adv.Stud. in Pure Math. 19 (1989), 193.MathSciNetGoogle Scholar
  25. [22]b
    M.Wadati, Y.Akutsu and T.Deguchi, Link Polynomials and Exactly Solvable Models, Lecture Notes Math., Springer-Verlag, 1990, p. 111.Google Scholar
  26. [22]c
    Y. Akutsu, Link Polynomials, Linking Numbers and Exactly Solvable Models, KEK Report, vol. 89–22, 1990, p. 45.MathSciNetGoogle Scholar
  27. [23]
    M.Wadati, T.Deguchi and Y.Akutsu, Nonlinear Evolution Equations,Intergrability and Spectral Methods(A.Fordy, ed.), Manchester University Press, 1991.Google Scholar
  28. [24]
    T. Deguchi, Int.J.Mod.Phys. A5 (1990), 2195.MathSciNetCrossRefGoogle Scholar
  29. [25]
    T. Deguchi, J.Phys.Soc.Jpn., 58 (1990), 3441.MathSciNetCrossRefGoogle Scholar
  30. [26]
    T. Deguchi and Y. Akutsu, J.Phys.A:Math.Gen. 23, (1990), 1861.MathSciNetCrossRefGoogle Scholar
  31. [27]
    T. Deguchi, J.Phys.Soc.Jpn. 59 (1990), 1119.MathSciNetCrossRefGoogle Scholar
  32. [28]
    Y.S. Wu, Phys.Rev.Lett. 52 (1984), 2103.MathSciNetCrossRefGoogle Scholar
  33. [29]
    G.W. Semenoff, Phys.Rev.Lett., 61 (1988), 517.MathSciNetCrossRefGoogle Scholar
  34. [30]
    A.M. Polyakov, Mod.Phys.Lett. 3A (1988), 325.MathSciNetCrossRefGoogle Scholar
  35. [31]
    C. Rovelli and L. Smolin, Phys.Rev.Lett., 61 (1988), 1155.MathSciNetCrossRefGoogle Scholar
  36. [32]
    E. Witten, Commun.Math.Phys. 121 (1989), 351.CrossRefGoogle Scholar
  37. [33]
    A. Kuniba, Y. Akutsu and M. Wadati, J.Phys.Soc.Jpn. 55 (1986), 3285.MathSciNetCrossRefGoogle Scholar
  38. [34]
    A. Tsuchiya and Y. Kanie, Adv.Stud. in Pure Math 16 (1988), 297.MathSciNetGoogle Scholar
  39. [35]
    T. Kohno, Ann.Inst.Fourier 37 (1987), 139.MathSciNetCrossRefGoogle Scholar
  40. [36]
    E. Verlinde, Nucl.Phys. B300[FS22] (1988), 360.MathSciNetCrossRefGoogle Scholar
  41. [37]
    G. Moore and N. Seiberg, Phys.Lett. B212 (1988), 451; Commun.Math.Phys. 123 (1989), 177.MathSciNetCrossRefGoogle Scholar
  42. [38]
    J.Fröhlich,, Statistics of fields, the Yang-Baxter equation, Nonpertubative Quantum Field Theory (G.'t Hooft et.al., eds.), Plenum Pub., 1988, p. 71.Google Scholar
  43. [38]a
    G. Felder, J. Fröhlich and G. Keller, Commun.Math.Phys. 124 (1989), 417,647.CrossRefGoogle Scholar
  44. [39]
    K.H. Rehren and B. Schroer, Nucl.Phys. B312 (1989), 715.MathSciNetCrossRefGoogle Scholar
  45. [40]
    H.C. Lee,M.-L. Ge,M. Counture and Y.S. Wu, Int.J.Mod.Phys. A,4 (1989), 2333.CrossRefGoogle Scholar
  46. [41]
    M. Wadati,Y. Yamada and T. Deguchi, J.Phys.Soc.Jpn. 58 (1989), 1153.MathSciNetCrossRefGoogle Scholar
  47. [42]
    A.B. Zamolodchikov and A.B. Zamolodchikov, Ann.of Phys. 120 (1979), 253.MathSciNetCrossRefGoogle Scholar
  48. [42]a
    M. Karowsi, H.J. Thun, T.T. Truong and P.H. Weisz, Phys.Lett. 67B (1977), 321.CrossRefGoogle Scholar
  49. [42]b
    K. Sogo,M. Uchimani,A. Nakamura and M. Wadati, Prog.Theor.Phys. 66 (1981), 1284.CrossRefGoogle Scholar
  50. [43]
    J.S. Birman, Braids. Links and Mapping Class Groups, Princeton University Press, 1974.Google Scholar
  51. [44]
    H.N.V. Temperley and E.H. Lieb, Proc.Roy.Soc. A322 (1971), 251.MathSciNetCrossRefGoogle Scholar
  52. [45]
    L.H. Kauffman, Contemp.Math. 78 (1988), 263; ibid 96 (1989), 221.MathSciNetCrossRefGoogle Scholar
  53. [46]
    A.B. Zamolodchikov and V.A. Fateev, Sov.J.Nucl.Phys. 32 (1980), 293.MathSciNetGoogle Scholar
  54. [47]
    K. Sogo,Y. Akutsu and T. Abe, Prog. Theor. Phys. 70 (1983), 730,739.MathSciNetCrossRefGoogle Scholar
  55. [48]
    Y. Akutsu,A. Kuniba and M Wadati, J.Phys.Soc.Jpn. 55 (1986), 1486.Google Scholar
  56. [49]
    V. Pasquier, J.Phys.A:Math.Gen. 20 (1987), L217,221.Google Scholar
  57. [50]
    A. Kuniba and T. Yajima, J.Phys.A:Math.Gen. 21 (1988), 519; J.Stat.Phys. 50 no.3/4 (1988), 829.MathSciNetCrossRefGoogle Scholar
  58. [51]
    M. Jimbo, T. Miwa and M. Okado, Commun.Math.Phys. 116 (1988), 353.MathSciNetCrossRefGoogle Scholar
  59. [52]
    V.G. Turaev, Invent.Math. 92 (1988), 527.MathSciNetCrossRefGoogle Scholar
  60. [53]
    N.Yu.Reshetikhin, LOMI preprints E-4-87, E-17-87, Leningrad, 1988.Google Scholar
  61. [54]
    I.V. Cherednik, Theor.Math.Phys. 43 (1980), 356.MathSciNetCrossRefGoogle Scholar
  62. [54]a
    O. Babelon,H.J. deVega and C.M. Viallet, Nucl.Phys. B190 (1981), 542.MathSciNetCrossRefGoogle Scholar
  63. [54]b
    J.H.H. Perk and C.L. Schultz, Phys.Lett. 84A (1981), 407.MathSciNetCrossRefGoogle Scholar
  64. [55]
    C.L. Schultz, Phys.Rev.Lett. 46 (1981), 629.MathSciNetCrossRefGoogle Scholar
  65. [56]
    P.P. Kulish and E.K. Sklyanin, J.Sov.Math. 19 (1981), 1596.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Miki Wadati
    • 1
  • Tetsuo Deguchi
    • 1
  • Yasuhiro Akutsu
    • 2
  1. 1.Department of Physics, Faculty of ScienceUniversity of TokyoJapan
  2. 2.Department of Physics, Faculty of ScienceOsaka UniversityJapan

Personalised recommendations