Advertisement

Quantum Groups pp 350-353 | Cite as

The multi-variable alexander polynomial and a one—parameter family of representations of Uq(sl(2,C)) at q2=−1

  • Jun Murakami
III. Quantum Groups, Low-Dimensional Topology And Link Invariants
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Briman, J. S., Braids, Links, and Mapping Class Groups, Princeton: Princeton University Press.Google Scholar
  2. [2]
    Deguchi, T., Akutsu, Y., Graded solutions of the Yang-Baxter relations and link polynomials, J. Phys. A: Math. Gen. 23 (1990), 1861–1875.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Izumi, Y., The q-analogue of the universal enveloping algebras of simple Lie algebras of type A, Master thesis (in Japanese), February, 1988, Osaka University.Google Scholar
  4. [4]
    Kauffman, L. H., Saleur, H., Free Fermions and the Alexander-Conway polynomial, preprint EFI 90-42, July, 1990, Enrico Fermi Institute.Google Scholar
  5. [5]
    Lee, H. C., Twisted quantum groups of A n and the Alexander-Conway link polynomial, preprint TP-90-0220, 1990, Chalk River Nuclear Laboratories.Google Scholar
  6. [6]
    Murakami, J., A state model for the multi-variable Alexander polynomial, preprint, August, 1990, Osaka University.Google Scholar
  7. [7]
    Sogo, K., Uchinami, M., Akutsu, Y., Wadati, M., Classification of exactly solvable two-component models, Prog. Theo. Phys. 68 (1982), 508–526.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Jun Murakami
    • 1
  1. 1.Department of MathematicsOsaka UniversityOsakaJapan

Personalised recommendations