Advertisement

Quantum Groups pp 335-340 | Cite as

Characters of Hecke and Birman-Wenzl algebras

  • S. V. Kerov
III. Quantum Groups, Low-Dimensional Topology And Link Invariants
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [DJ]
    R. Dipper, G. James, Proc. London Math. Soc. 52–3 (1986), 20–52.MathSciNetCrossRefGoogle Scholar
  2. [K1]
    S.Kerov, Random Young tableaux and q-analog of hook formula, Funk. Anal. Pril. (1991). (Russian)Google Scholar
  3. [K2]
    S. Kerov, Journ. Sov. Math. 46–5 (1989), 2148–58.MathSciNetCrossRefGoogle Scholar
  4. [K3]
    S. Kerov, Zapiski Nauch. Sem LOMI 172 (1989), 68–77. (Russian)Google Scholar
  5. [K4]
    S. Kerov, J. Sov. Math. Soc. 47-2 (1989), 2503–07.MathSciNetCrossRefGoogle Scholar
  6. [Mac]
    I.Macdonald, Symmetric functions and Hall polynomials, Oxford, 1979.Google Scholar
  7. [T]
    E. Thoma, Math. Zap 85 (1964), 40–61.MathSciNetCrossRefGoogle Scholar
  8. [VK1]
    A. Vershik, S. Kerov, Sov. Math. Dokl. 38-1 (1989), 134–137.MathSciNetGoogle Scholar
  9. [VK2]
    A. Vershik, S. Kerov, Funk. Anal. Pril. 15-4 (1981), 15–27. (Russian)MathSciNetGoogle Scholar
  10. [VK3]
    A. Vershik, S. Kerov, Adv. Stud. Contemp. Math. 7 (1990).Google Scholar
  11. [W]
    H.Wenal, Thesis.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • S. V. Kerov
    • 1
  1. 1.Leningrad Electrical Engeering Institute of Communications, LeningradMoika 61USSR

Personalised recommendations