Advertisement

Quantum Groups pp 326-334 | Cite as

On relations between poisson groups and quantum groups

  • S. Zakrzewski
II. Quantum Groups, Symmetries Of Dynamical Systems And Conformal Field Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)

Keywords

Quantum Group Heisenberg Group Poisson Structure Cotangent Bundle Quantum Deformation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Coste A., Dazord P. and Weinstein A., Goupoides symplectiques, Publ. du Dep. de Math. de l'Universitè de Lyon 1.Google Scholar
  2. [2]
    Van Daele A., Quantum deformation of the Heisenberg group, Proceedings of Nara conference (1990) (to appear).Google Scholar
  3. [3]
    Van Daele A., private communication.Google Scholar
  4. [4]
    Kac G.I. and Palyutkin V.G., An example of a ring group generated by Lie Groups, Ukrain. Math. J. 16 (1964), 99–105.MathSciNetGoogle Scholar
  5. [5]
    Karasev M.V., Analogues of objects of Lie groups theory for nonlinear Poisson brackets, Math. USSR Izvestiya 28 (1987), 497–527.CrossRefzbMATHGoogle Scholar
  6. [6]
    Lu J.-H. and Weinstein A., Poisson Lie groups, dressing transformations and Bruhat decompositions, J. Diff. Geometry 31 (1990), 501–526.MathSciNetzbMATHGoogle Scholar
  7. [7]
    Lu J.-H. and Weinstein A., Groupoides symplectiques doubles des groups de Lie-Poisson, C. R. Acad. Sci. Paris 309 (1989), 951–954.MathSciNetzbMATHGoogle Scholar
  8. [8]
    Podleś and Woronowicz S.L., Quantum Deformation of Lorentz group, Commun. Math. Phys. 130 (1990), 381–431.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Souriau J.-M., Structure des systèmes dynamiques, Dunod, Paris, 1970.zbMATHGoogle Scholar
  10. [10]
    Szymczak I. and Zakrzewski S., Quantum Deformation of the Heisenberg group obtained by — geometric quantization, J. Geom. and Phys. (to appear).Google Scholar
  11. [11]
    Weinstein A., The symplectic category, Lect. Notes Math. 905 (1982), 45–50.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    Weinstein A., Symplectic groupoids and Poisson manifolds, Bull Amer. Soc. 16 (1987), 101–104.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    Weinstein A., Noncommutative geometry and geometric quantization, preprint (1990).Google Scholar
  14. [14]
    Woronowicz S. L., Compact matrix pseudogroups, Commun. Math. Phys. 111 (1987), 613–665.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    Woronowicz S. L., A remark on compact matrix quantum groups, Lett. Math. Phys. 21 (1991), 35–39.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    Woronowicz S. L., A work in preparation.Google Scholar
  17. [17]
    Woronowicz S. L., Unbounded elements affiliated with C*-algebras and non-compact quantum-groups, Commun. Math. Phys. 136 (1991), 399–432.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    Woronowicz S. L., private communication.Google Scholar
  19. [19]
    Woronowicz S.L. and Zakrzewski S., Quantum deformation of Lorentz group related to Gauss decomposition, in preparation.Google Scholar
  20. [20]
    Zakrzewski S., Matrix pseudogroups associated with anti-commutative plane, Lett. Math. Phys. 21 (1991), 309–321.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    Zakrzewski S., Hamiltonian group representations and phase actions, Rep. Math. Phys. 28 (1989), 189–196.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Zakrzewski S., Quantum and classical pseudogroups, Part I Union pseudogroups and their quantization, Commun. Math. Phys. 134 (1990), 347–370.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    Zakrzewski S., Quantum and classical pseudogroups, Part II Differential and symplectic pseudogroups, Commun. Math. Phys. 134 (1990), 371–395.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [24]
    Zakrzewski S., Hopf *-algebra of polynomials on the quantum SL(2, ℞) for a “unitary” R-matrix, Lett. Math.Phys. 21 (1991).Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • S. Zakrzewski
    • 1
  1. 1.Department of Mathematical Methods in Physics, Faculty of PhysicsUniversity of Warsaw, HozaWarsawaPoland

Personalised recommendations