Advertisement

Quantum Groups pp 312-325 | Cite as

Integrable time-discrete systems: Lattices and mappings

  • F. W. Nijhoff
  • V. G. Papageorgiou
  • H. W. Capel
II. Quantum Groups, Symmetries Of Dynamical Systems And Conformal Field Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)

Keywords

Poisson Bracket Continuum Limit Poisson Structure Monodromy Matrix Hamiltonian Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    F.W. Nijhoff, G.R.W. Quispel and H.W. Capel, Phys. Lett. 97A (1983), 125.MathSciNetCrossRefGoogle Scholar
  2. [2]
    G.R.W. Quispel, F.W. Nijhoff, H.W. Capel and J. van der Linden, Physica 125A (1984), 344.CrossRefGoogle Scholar
  3. [3]
    F.W. Nijhoff, H.W. Capel, G.L. Wiersma and G.R.W. Quispel Phys. Lett. 105A (1984), 267.MathSciNetCrossRefGoogle Scholar
  4. [3a]
    H.W. Capel, G.L. Wiersma and F.W. Nijhoff, Physica 138A (1986), 76.MathSciNetCrossRefGoogle Scholar
  5. [4]
    M.J. Ablowitz and F.J. Ladik, Stud. Appl. Math. 55 (1976), 213 57 (1977), 1.MathSciNetCrossRefGoogle Scholar
  6. [5]
    R. Hirota, J. Phys. Soc. Japan 43 (1977), 1424, 2074, 2079; ibid. 50 (1981), 3785.MathSciNetCrossRefGoogle Scholar
  7. [6]
    E. Date, M. Jimbo and T. Miwa, J. Phys. Soc. Japan 51 (1982), 4125 52 (1983), 388, 766.CrossRefGoogle Scholar
  8. [7]
    G.L. Wiersma and H.W. Capel, Physica 142A (1987), 199; ibid. 149A (1988), 49,75; Phys. Lett. 124A (1987), 124.MathSciNetCrossRefGoogle Scholar
  9. [8]
    E.M. McMillan, Topics in Physics, eds. W.E. Brittin and H. Odabasi, Colorado Associated Univ. Press, Boulder, 1971, p. 219.Google Scholar
  10. [9]
    G.R.W. Quispel, J.A.G. Roberts and C.J. Thompson, Phys. Lett. A126 (1988), 419; Physica D34 (1989), 183.MathSciNetCrossRefGoogle Scholar
  11. [10]
    A.P. Veselov, Funct. Anal. Appl. 22 (1988), 83; Theor. Math. Phys. 71 (1987), 446.MathSciNetCrossRefGoogle Scholar
  12. [11]
    P.A. Deift and L.C. Li, Commun. Pure Appl. Math. 42 (1989), 963.MathSciNetCrossRefGoogle Scholar
  13. [12]
    J.Moser and A.P.Veselov, Preprint ETH (Zürich) (1989).Google Scholar
  14. [13]
    V.G. Papageorgiou, F.W. Nijhoff and H.W. Capel, Phys. Lett. 147A (1990), 106.MathSciNetCrossRefGoogle Scholar
  15. [14]
    Yu.B. Suris, Phys. Lett. 145A (1990), 113; Algebra i Anal. 2 (1990), 141 (Russian)MathSciNetCrossRefGoogle Scholar
  16. [15]
    M.Bruschi, O.Ragnisco, P.M.Santini and G.-Z.Tu, Integrable Symplectic Maps, Preprint Università di Roma I (June 1990).Google Scholar
  17. [16]
    H.W.Capel, F.W.Nijhoff and V.G.Papageorgiou, Complete Integrability of Lagrangian Lattices and Mappings of KdV Type, Preprint INS # 165/90.Google Scholar
  18. [17]
    S.V. Manakov, Sov. Phys. JETP.Google Scholar
  19. [18]
    L.D.Faddeev, Développements Récents en Théorie des Champs et Mécanique Statistique, eds. J.-B. Zuber and R. Stora, North-Holland Publ. Co., 1984, p. 561.Google Scholar
  20. [19]
    L.D. Faddeev and L.A. Takhtajan, Hamiltonian Methods in the Theory of Solitons, Springer Verlag, Berlin, 1981.zbMATHGoogle Scholar
  21. [20]
    J.M. Maillet, Phys. Lett. 162B (1985), 137; Nucl. Phys. B269 (1986), 54.MathSciNetCrossRefGoogle Scholar
  22. [21]
    A.G. Reyman and M.A. Semenov-Tian-Shanskii, Phys. Lett. 130A (1988), 456.CrossRefGoogle Scholar
  23. [22]
    O. Babelon and C. Viallet, Phys. Lett. 237B (1990), 411.MathSciNetCrossRefGoogle Scholar
  24. [23]
    J.Avan and M.Talon, Preprint PAR-LPTHE 90–30.Google Scholar
  25. [24]
    L.-C. Li and S. Parmentier, C.R. Acad. Sci. Paris 307 no. Série I (1988), 279; Commun. Math. Phys. 125 (1989), 545.MathSciNetGoogle Scholar
  26. [25]
    O.Babelon and L.Bonora, Quantum Toda Theory, Preprint SISSA/ISAS-141/90/EP.Google Scholar
  27. [26]
    S.L. Luk'yanov, Funct. Anal. Appl. 22 (1989), 255.MathSciNetCrossRefGoogle Scholar
  28. [27]
    J.L. Gervais, Phys. Lett. 160B (1985), 277, 279.MathSciNetCrossRefGoogle Scholar
  29. [28]
    L.D. Faddeev and L.A. Takhtajan, Lect. Notes Phys. 246 (1986), 166.MathSciNetCrossRefGoogle Scholar
  30. [29]
    A.Yu. Volkov, Theor. Math. Phys. 74 (1988), 96.CrossRefGoogle Scholar
  31. [30]
    O. Babelon, Phys. Lett. 215B (1988), 523; ibid. 238B (1990), 234.MathSciNetCrossRefGoogle Scholar
  32. [31]
    F.W.Nijhoff and V.G.Papageorgiou, Similarity Reductions of Integrable Lattices and Discrete Analogues of Painlevé II Equation, Preprint INS # 155/90.Google Scholar
  33. [32]
    M.J. Ablowitz and H. Segur, Phys. Rev. Lett. 38 (1977), 1103.MathSciNetCrossRefGoogle Scholar
  34. [32a]
    M.J. Ablowitz, A. Ramani and H. Segur, J. Math. Phys. 21 (1980), 715, 1006.MathSciNetCrossRefGoogle Scholar
  35. [33]
    H. Flaschka and A.C. Newell, Commun. Math. Phys. 76 (1980), 67.MathSciNetCrossRefGoogle Scholar
  36. [34]
    M. Jimbo, T. Miwa and K. Ueno, Physica 2D (1981), 306.MathSciNetGoogle Scholar
  37. [34a]
    M. Jimbo and T. Miwa, Physica 2D (1981), 407 4D (1981), 47.MathSciNetGoogle Scholar
  38. [35]
    A.S. Fokas and M.J. Ablowitz, Phys. Rev. Lett. 47 (1981), 1096.MathSciNetCrossRefGoogle Scholar
  39. [36]
    A.R. Its and V.Y. Novokshenov, The Isomonodromic Deformation Theory in the Theory of Painlevé Equations, Lect. Notes Math. 1191 (1986), Springer Verlag, Berlin.zbMATHGoogle Scholar
  40. [37]
    E. Barouch, B.M. McCoy and T.T. Wu, Phys. Rev. Lett. 31 (1973), 1409.CrossRefGoogle Scholar
  41. [37a]
    T.T. Wu, B.M. McCoy, C.A. Tracy and E. Barouch, Phys. Rev. B13 (1976), 316.CrossRefGoogle Scholar
  42. [38]
    M. Jimbo, T. Miwa, Y. Mori and M. Sato, Physica 1D (1980), 80.MathSciNetGoogle Scholar
  43. [39]
    E. Brézin and V.A. Kazakov, Phys. Lett. 236B (1990), 144.CrossRefGoogle Scholar
  44. [40]
    D.J.Gross and A.A.Migdal, Nonperturbative Two-Dimensional Quantum Gravity, Preprint PUTP-1148 (Oct. 1989).Google Scholar
  45. [41]
    M.R.Douglas and S.H.Shenker, Strings in less than one dimension, Preprint Rutgers University, RU-89-34.Google Scholar
  46. [42]
    A.R.Its, A.V.Kitaev and A.S.Fokas, Isomonodromic Approach in the Theory of 2D Quantum Gravity, Usp. Math. Nauk (to appear).Google Scholar
  47. [43]
    F.W.Nijhoff, V.G.Papageorgiou, H.W.Capel and G.R.W.Quispel, The Lattice Gel'fand-Dikii Hierarchy, Preprint INS # 154/90.Google Scholar
  48. [44]
    I.M. Gel'fand and L.A. Dikii, Funct. Anal. Appl. 10 (1976), 18; ibid. 13 (1979), 8; Russ. Math. Surv. 30 (1975), 77.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • F. W. Nijhoff
    • 1
  • V. G. Papageorgiou
    • 1
  • H. W. Capel
    • 2
  1. 1.Department of Mathematics and Computer Science and Institute for Nonlinear StudiesClarkson UniversityPotsdamUSA
  2. 2.Instituut voor Theoretische FysicaUniversiteit van AmsterdamThe Netherlands

Personalised recommendations