Advertisement

Quantum Groups pp 303-311 | Cite as

Fusion rsos models and rational coset models

  • Atsuo Kuniba
  • Tomoki Nakanishi
II. Quantum Groups, Symmetries Of Dynamical Systems And Conformal Field Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)

Abstract

A series of conjectures is presented for a family of fusion Open image in new window RSOS models labeled by rank n, level ℓ, degree N of the fusion and primitive roots of unity Open image in new window . Based on it, we introduce rational coset models which are the universality classes of their critical behaviors.

Keywords

Fusion Rule Universality Class Coset Model Boltzmann Weight Dominant Integral Weight 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    G.E. Andrews, R.J. Baxter and P.J. Forrester, J. Stat. Phys. 35 (1984), 193.MathSciNetCrossRefGoogle Scholar
  2. [2]
    M. Jimbo, T. Miwa and M. Okado, Nucl. Phys. B300 [FS22] (1988), 74.MathSciNetCrossRefGoogle Scholar
  3. [3]
    V. Pasquier, Nucl. Phys B295 [FS21] (1988), 491.MathSciNetCrossRefGoogle Scholar
  4. [3]a
    V.V. Bazhanov and N.Yu. Reshetikhin, Int. J. Mod. Phys. A4 (1989), 115.MathSciNetCrossRefGoogle Scholar
  5. [4]
    M. Jimbo, T. Miwa and M. Okado, Commun. Math. Phys. 116 (1988), 507.MathSciNetCrossRefGoogle Scholar
  6. [5]
    E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, Lett. Math. Phys. 17 (1989), 69.MathSciNetCrossRefGoogle Scholar
  7. [6]
    A.Kuniba, Exact Solution of the Solid-on-Solid Models for Twisted Affine Lie Algebras A 2n(2) and A2n−1(2), Nucl. Phys. B (to appear).Google Scholar
  8. [7]
    P.J. Forrester and R.J. Baxter, J. Stat. Phys. 38 (1985), 435.MathSciNetCrossRefGoogle Scholar
  9. [8]
    V. Pasquier, Nucl. Phys. B285 [FS21] (1987), 162.MathSciNetCrossRefGoogle Scholar
  10. [8]a
    P. di Francesco, H. Saleur and J.-B. Zuber, Nucl. Phys. B300 [FS22] (1988), 393.CrossRefGoogle Scholar
  11. [9]
    H. Riggs, Nucl. Phys. B326 (1989), 673.MathSciNetCrossRefGoogle Scholar
  12. [10]
    T. Nakanishi, Nucl. Phys. B334 (1990), 745.CrossRefGoogle Scholar
  13. [11]
    A.Kuniba, T.Nakanishi and I.Suzuki, Ferro and Antiferro Magnetizations in RSOS Models, Nucl. Phys. B (to appear).Google Scholar
  14. [12]
    A.Kuniba, T.Nakanishi, Proc. of International Colloquium on Modern Quantum Field Theory, Bombay, World Scientific, Singapore, 1990, in press.Google Scholar
  15. [13]
    E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, Nucl. Phys. B290 [FS20] (1987), 231; Adv. Stud. in Pure Math. 16 (1988), 17.MathSciNetCrossRefGoogle Scholar
  16. [14]
    M. Jimbo, T. Miwa and M. Okado, Mod. Phys. Lett. B1 (1987), 73.CrossRefGoogle Scholar
  17. [15]
    M. Jimbo, A. Kuniba, T. Miwa and M. Okado, Commun. Math. Phys. 119 (1988), 543.MathSciNetCrossRefGoogle Scholar
  18. [16]
    E.Date, M.Jimbo, A.Kuniba, T.Miwa and M.Okado, Talk at Taniguchi Conference, Kyoto, unpublished, See ref. 12.Google Scholar
  19. [17]
    R.J. Baxter, Exactly Solved Models in Statistical Mechanics, Academic Press, London, 1982.zbMATHGoogle Scholar
  20. [18]
    E. Date, M. Jimbo, A. Kuniba, T. Miwa and M. Okado, Lett. Math. Phys. 17 (1989), 51 (1989), 108, Infinite Dimensional Lie Algebras and Groups, ed. V.G.Kac, World Scientific, Singapore; Adv. Stud. in Pure Math. 19 (1989), 149.MathSciNetCrossRefGoogle Scholar
  21. [19]
    M.Jimbo, K.C.Misra, T.Miwa and M.Okado, Combinatorics of Representations of Open image in new window at q=0, Kyoto preprint (1990).Google Scholar
  22. [20]
    E. Verlinde, Nucl. Phys. B300 (1988), 360.MathSciNetCrossRefGoogle Scholar
  23. [21]
    A. Tsuchiya, K. Ueno and Y. Yamada, Adv. Stud. in Pure Math. 19 (1989), 459.MathSciNetGoogle Scholar
  24. [22]
    F.M.Goodman and T.Nakanishi, Fusion Algebras in Integrable Systems in Two Dimensions, Iowa Preprint (1990).Google Scholar
  25. [23]
    E.Date, M.Jimbo and T.Miwa, Physics and Mathematics of Strings, eds. L.Brink, D.Friedan and A.M.Polyakov, World Scientific, 1990, pp. 185.Google Scholar
  26. [24]
    V.G. Kac and D.H. Peterson, Adv. Math. 53 (1984), 125.MathSciNetCrossRefGoogle Scholar
  27. [25]
    V.G.Kac and M.Wakimoto, Infinite Dimensional Lie Algebras and Groups, ed. V.G.Kac, World Scientific, Singapore, 1989, p. 138.Google Scholar
  28. [26]
    J. Bagger, D. Nameschansky and S. Yankielowicz, Phys. Rev. Lett. 60 (1988), 389.MathSciNetCrossRefGoogle Scholar
  29. [27]
    D. Kastor, E. Martinec and Z. Qiu, Phys. Lett. B200 (1988), 434.MathSciNetCrossRefGoogle Scholar
  30. [28]
    F. Ravanini, Mod. Phys. Lett. A3 (1988), 271.MathSciNetCrossRefGoogle Scholar
  31. [29]
    K. Hamada, Nucl.Phys. B334 (1990).Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Atsuo Kuniba
    • 1
  • Tomoki Nakanishi
    • 2
  1. 1.School of Mathematical Sciences, IASAustralian National UniversityAustralia
  2. 2.Department of MathematicsNagoya UniversityJapan

Personalised recommendations