Advertisement

Quantum Groups pp 245-258 | Cite as

New solutions of Yang-Baxter equations and quantum group structures

  • Mo-Lin Ge
II. Quantum Groups, Symmetries Of Dynamical Systems And Conformal Field Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)

Abstract

New solutions of Yang-Baxter equations including those associated with the fundamental representations of B n , C n and D n , Řj1/2 for VjV1/2 and colored R-matrix for SL q (2) with q a root of a unity are explicitly given. The related quantum group structures have been also set up. The Yang-Baxterization is performed to generate spectral parameter-depended solutions of YBE.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Yang-Baxter Equation in Integrable Systems, (M.Jimbo, ed.), World Scientific, Singapore, 1990. Pierre Cartier, Recent Development on The Applications of Braid Groups to Topology and Algebra, Seminare BOURBAKI, no 716 (November, 1989). L.C.Biedenharn, An Overview of Quantum Group, XVIIIthICGTMP, Moscow.Google Scholar
  2. [2]
    C.N. Yang, Phys.Rev.Lett. 19 (1967), 1312; Phys.Rev. 168 (1968), 1920.MathSciNetCrossRefGoogle Scholar
  3. [3]
    Braid Group, Knot Theory and Statistical Mechanics (C.N.Yang and M.L.Ge, eds.), World Scientific, Singapore, 1989.Google Scholar
  4. [4]
    T. Kohno, in Knot Theory and Statistical Mechanics (C.N. Yang and M.L. Ge, eds.), World Scientific, Singapore, 1989, p. 135. L.D.Faddeev, Commun.Math.Phys 132 (1990), 131.Google Scholar
  5. [5]
    V.G. Drinfeld, Sov.Math.Dokl. 32 (1985), 254; Yang-Baxter Equation in Integrable Systems, (M.Jimbo ed.), World Scientific, Singapore, 1990.Google Scholar
  6. [6]
    M. Jimbo, Lett.Math.Phys. 10 (1985), 63.MathSciNetCrossRefGoogle Scholar
  7. [7]
    M. Jimbo, Commun.Math.Phys. 102 (1986), 537.MathSciNetCrossRefGoogle Scholar
  8. [8]
    N.Yu.Reshetikhin, Preprint LOMI E-4-87, 1988.Google Scholar
  9. [9]
    L.D.Faddeev, N.Yu.Reshetikhin and L.A. Takhtajan, Preprint LOMI E-14-87. L.A.Takhtajan, Nankai Lecture on Math.Phys.”Introduction to Quantum Group and Integrable Massive Models of Quantum Field Theory” (M.L.Ge and B.H.Zhao, eds.), World Scientific, 1990, pp. 69–197.Google Scholar
  10. [10]
    M. Wadati, T. Deguchi and Y. Akutsu, Phys.Reports. 180 (1989), 247. Braid Group, Knot Theory and Statistical Mechanics (C.N.Yang and M.L.Ge, eds.), World Scientific, Singapore, 1989, pp. 151–200.MathSciNetCrossRefGoogle Scholar
  11. [11]
    H.J. de Vega, Adv.Studies in Pure Math. 19 (1989), 567; Inter.J.Mod.Phys. B4 (1990), 735.Google Scholar
  12. [12]
    A.A. Belavin and V.G. Drinfeld, Funct.Anal.Appl. 16 (1982), 159.MathSciNetCrossRefGoogle Scholar
  13. [13]
    A.N. Kirillov and N.Yu. Reshetikhin, Commun. Math. Phys. 134 (1990), 421.MathSciNetCrossRefGoogle Scholar
  14. [14]
    M.L. Ge,L.Y. Wang,Y.S. Wu and K. Xue, Inter.J.Mod.Phys. 4A (1989), 3351. M.L.Ge,Y.Q.Li and K.Xue, J.Phys. 23A (1990), 605; 619. M.L.Ge and K.Xue, Phys.Lett. 146A (1990), 245 152A (1990), 266.MathSciNetCrossRefGoogle Scholar
  15. [15]
    M.L.Ge,Y.S.Wu and K.Hue, Explicit trigonometric Yang-Baxterization, ITP-SB-90-02; Inter.J.Mod.Phys. (to appear).Google Scholar
  16. [16]
    M.L. Ge and K. Hue, Proceedings of Workshop of Argonne National Laboratory (T. Curtright, D.B. Fairlie and C.K. Zachos, eds.), World Scientific, Singapore, 1990.Google Scholar
  17. [17]
    L.D. Faddeev,N.Yu. Reshetikhin and L.A. Takhtajan, Braid Group, Knot Theory and Statistical Mechanics (C.N. Yang and M.L. Ge, eds.), World Scientific, Singapore, 1989, p. 97.Google Scholar
  18. [18]
    H.C.Lee,M.Couture and N.C.Schmeing, CRNL-TP-1125R, Canada.Google Scholar
  19. [19]
    E.Cremmer and J.-L. Gervais, Preprint LPTENS 89/19, 1989.Google Scholar
  20. [20]
    M.Couture,Y.Cheng,M.L.Ge and K.Xue, Inter.J.Mod.Phys. 6A no 4. (1990).Google Scholar
  21. [21]
    V. Jones, Commun.Math.Phys. 125 (1989), 459.CrossRefGoogle Scholar
  22. [22]
    Y. Cheng,M.L. Ge and K. Xue, Commun.Math.Phys. 136 (1990), 195; ITP-SB-90-38.MathSciNetCrossRefGoogle Scholar
  23. [23]
    Y.Cheng,M.L.Ge and K.Xue, Construction of Non-standard Solutions for YBE in Terms-of q-Deformed Boson Representations of SL q (2) with q a Root of Unity, Nankai preprint, 1990.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Mo-Lin Ge
    • 1
  1. 1.Theoretical Physics DepartmentNankai Institute of MathematicsTianjinChina

Personalised recommendations