Quantum Groups pp 221-244 | Cite as

Contractions of quantum groups

  • E. Celeghini
  • R. Giachetti
  • E. Sorace
  • M. Tarlini
II. Quantum Groups, Symmetries Of Dynamical Systems And Conformal Field Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)


Hopf Algebra Quantum Group Heisenberg Algebra Representative Function Contraction Procedure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Ab]
    Abe E., Hopf algebras, Cambridge Tracts in Math. no. 74 (1980), Cambridge Univ. Press.Google Scholar
  2. [An]
    Andrews G.E., Reg. Conf. Series in Math. no. 66 (Providence, R.I., 1986, AMS).Google Scholar
  3. [Bc]
    Bacry H., Leçons sur la Théorie des Groupes et les Symétries des Particules Elémentaires, (New York, N.Y., 1967, Gordon and Breach).Google Scholar
  4. [Bd]
    Biedenharn L.C., J. Phys. A: Math. Gen. 22 (1989), L873; A q-boson realization of the quantum group SU q (2) and the theory of q-tensor operators, invited paper at Clausthal Summer Workshop on Mathematical Physics (1989).Google Scholar
  5. [BL]
    Biedenharn L.C., Louck J.D., The Angular Momentum in Quantum Physics, Enc. of Math. and its Appl. 8, (Reading, Mass., 1981, Addison-Wesley).Google Scholar
  6. [BT]
    Biedenharn L.C. and Tarlini M., On q-tensor operators for quantum groups, Lett. Math. Phys. 20 (1990), 271.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [Bx]
    Baxter R.J., Exactly solved Models in Statistical Mechanics, Academic Press, New York, 1982.zbMATHGoogle Scholar
  8. [C1]
    Celeghini E., Giachetti R., Sorace E. and Tarlini M., J. Math. Phys. 31 (1990), 2548.MathSciNetCrossRefGoogle Scholar
  9. [C2]
    Celeghini E., Giachett R., Sorace E. and Tarlini M., The quantum Heisenberg group H(1) q, J. Math. Phys. (to appear).Google Scholar
  10. [C3]
    Celeghini E., Palev T.D., Tarlini M., The Quantum Superalgebra B q (0|1) and q-deformed Creation and Annihilation Operators, Kyoto preprint YITP/K-865; Mod. Phys. Lett. B, (in press).Google Scholar
  11. [C4]
    Celeghini E., Giachetti R., Sorace E. and Tarlini M., The three dimensional Euclidean quantum group E(3) q and its R-matrix, preprint Firenze (1990).Google Scholar
  12. [CT]
    Celeghini E. and Tarlini M., Nuovo Cim. B61 (1981), 265 B65 (1981), 172 B68 (1982), 133.MathSciNetCrossRefGoogle Scholar
  13. [Ch]
    Chaichian M., Ellinas D. and Kulish P.P., Phys. Rev. Lett. 65 (1990), 980.MathSciNetCrossRefGoogle Scholar
  14. [Dr]
    Drinfeld V.G., Proc. ICM-86, Berkeley 1 (1987), 798.MathSciNetGoogle Scholar
  15. [F1]
    Faddeev L.D., Reshetikhin N.Yu. and Takhtajan L.A., “Braid Group, Knot Theory and Statistical Mechanics” eds. C.N. Yang and M.L. Ge, World Scientific, Singapore, 1989.Google Scholar
  16. [Fd]
    Faddeev L.D., Integrable models in (1+1)-dimensional quantum field theory, Les Houches Lectures 1982, (Amsterdam, 1984, Elsevier).Google Scholar
  17. [FT]
    Faddeev L.D., Takhtajan L.A., Hamiltonian Methods in the Theory of Solitons, Springer-Verlag, Berlin, 1987.CrossRefzbMATHGoogle Scholar
  18. [Gc]
    Giachetti R., Studio Algebrico della Dinamica di un Oscillatore Quantistico con Reazione, Rend. Sem. Fac. Sci. di Cagliari (1991), in press.Google Scholar
  19. [Gl]
    Gilmore R., Lie groups, Lie algebras and some of their applications, Wiley, New York, 1974.zbMATHGoogle Scholar
  20. [J1]
    Jimbo M., Int. J. of Mod. Phys. A4 (1989), 3759.MathSciNetCrossRefGoogle Scholar
  21. [J2]
    Jimbo M., in.Google Scholar
  22. [K1]
    Kulish P.P., Kontraktzia kvantovikh algebr i q-ostzilliatori, LOMI preprint (1990); Teor. Mat. Fiz. 86 no. 1 (1991), 158.Google Scholar
  23. [K2]
    Kulish P.P., private communication.Google Scholar
  24. [Kg]
    Kagramanov E.D. Mir-Kasimov R.M. and Nagiyev Sh.M., J. Math. Phys. 31 (1990), 1733.MathSciNetCrossRefGoogle Scholar
  25. [KR1]
    Kulish P.P., Reshetikhin N.Yu., Zap. Nauchn. Sem. LOMI 101 (1981), 101; J. Sov. Math. 23 (1983), 2435.MathSciNetGoogle Scholar
  26. [KR2]
    Kulish P.P., Reshetikhin N.Yu., Lett. Math. Phys. 18 (1989), 143.MathSciNetCrossRefGoogle Scholar
  27. [KS]
    Klimyk A.U. and Smirnov Yu.F., Kiev ITP preprint 90-36E (1990).Google Scholar
  28. [Mf]
    Macfarlane A.J., J. Phys. A: Math. Gen. 22 (1989), 4581.MathSciNetCrossRefGoogle Scholar
  29. [Mj]
    Majid S., Int. J. of Mod. Phys. A 5 (1990), 1.MathSciNetCrossRefGoogle Scholar
  30. [Mn]
    Manin Yu.I., Quantum groups and Non-Commutative Geometry, (Montreal, 1988, Centre de Recherches Mathématiques).Google Scholar
  31. [Ng]
    Ng Y.J., J. Phys. A: Math. Gen. 23 (1990), 1023.CrossRefGoogle Scholar
  32. [Op]
    October session on open problems in this conference.Google Scholar
  33. [Ps]
    Postnikov M., Groupes et Algèbres de Lie, (Moscou, 1985, Editions Mir).Google Scholar
  34. [VK]
    Vaksman L.L. and Korogodskii L.I., Soviet Math. Dokl. 39 (1989), 173.MathSciNetGoogle Scholar
  35. [W1]
    Woronowicz S., Publ. RIMS (Kyoto University) 23 (1987), 117; Commun. Math. Phys. 111 (1987), 613 122 (1989), 125.MathSciNetCrossRefGoogle Scholar
  36. [W2]
    Woronowicz S., private communication.Google Scholar
  37. [WZ]
    Wess J., Zumino B., Covariant differential calculus on the quantum hyperplane, preprint CERN-TH-5697/90.Google Scholar
  38. [Ya]
    Yan H., J. Phys. A 23 (1990), L1155.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • E. Celeghini
    • 3
    • 1
  • R. Giachetti
    • 2
    • 1
  • E. Sorace
    • 1
    • 3
  • M. Tarlini
    • 1
    • 3
  1. 1.I.N.F.N. Sezione di FirenzeItaly
  2. 2.Dipartimento di Matematica dell' UniversitàBologna
  3. 3.Dipartimento di Fisica dell' UniversitàFirenzeItalia

Personalised recommendations