Advertisement

Quantum Groups pp 210-220 | Cite as

Affine toda field theory: S-matrix vs perturbation

  • H. W. Braden
  • E. Corrigan
  • P. E. Dorey
  • R. Sasaki
II. Quantum Groups, Symmetries Of Dynamical Systems And Conformal Field Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)

Keywords

Feynman Diagram Conformal Field Theory Mass Eigenstates Order Pole Loop Momentum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.B. Zamolodchikov, Integrable Field Theory from Conformal Field Theory, Proc. of the Taniguchi Symposium, Kyoto, 1988.Google Scholar
  2. [2]
    A.B. Zamolodchikov, Int. J. Mod. Phys. A4 (1989), 4235.MathSciNetCrossRefGoogle Scholar
  3. [3]
    T. Eguchi and S-K Yang, Phys. Lett. B224 (1989), 373.MathSciNetCrossRefGoogle Scholar
  4. [4]
    T.J. Hollowood and P. Mansfield, Phys. Lett. B226 (1989), 73.MathSciNetCrossRefGoogle Scholar
  5. [5]
    V.A. Fateev and A.B. Zamolodchikov, Int. J. Mod. Phys. A5 (1990), 1025.MathSciNetCrossRefGoogle Scholar
  6. [6]
    T. Eguchi and S-K Yang, Phys. Lett. B235 (1990), 282.MathSciNetCrossRefGoogle Scholar
  7. [7]
    D. Bernard and A. LeClair, Nucl. Phys. B340 (1990), 721.MathSciNetCrossRefGoogle Scholar
  8. [8]
    T.R. Klassen and E. Melzer, Nucl. Phys. B338 (1990), 485.MathSciNetCrossRefGoogle Scholar
  9. [9]
    F.A. Smirnov, Int. J. Mod. Phys. A6 (1991), 1407.CrossRefGoogle Scholar
  10. [10]
    T.Nakatsu, Quantum Group approach to Affine Toda field theory, Tokyo preprint UT-567.Google Scholar
  11. [11]
    H.W. Braden, E. Corrigan, P.E. Dorey and R. Sasaki, Phys. Lett B227 (1989), 411.MathSciNetCrossRefGoogle Scholar
  12. [12]
    H.W.Braden, E.Corrigan, P.E.Dorey and R.Sasaki, Aspects of perturbed conformal field theory, affine Toda field theory and exact S-matrices, Proc. XVIII Inter. Conf. Differential Geometric Methods in Theoretical Physics, Lake Tahoe, USA 2-8 July 1989 (to appear).Google Scholar
  13. [13]
    H.W.Braden, E.Corrigan, P.E.Dorey and R.Sasaki, Aspects of affine Toda field theory, Proceedings of the 10th Winter School on Geometry and Physics, Srni, Czechoslovakia; Integrable systems and Quantum Groups, Pavia, Italy; Spring Workshop on Quantum Groups, ANL, USA (to appear).Google Scholar
  14. [14]
    H.W.Braden, E.Corrigan, P.E.Dorey and R.Sasaki, Multiple Poles and Other Features of Affine Toda field theory, preprint NSF-ITP-90-174, DTP-901-57, YITP/U-90-25; Nucl. Phys. B, in press.Google Scholar
  15. [15]
    P. Christe and G. Mussardo, Nucl. Phys. B330 (1990), 465.MathSciNetCrossRefGoogle Scholar
  16. [16]
    C. Destri and H.J. de Vega, Phys. Lett. B233 (1989), 336.CrossRefGoogle Scholar
  17. [17]
    H.W. Braden, E. Corrigan, P.E. Dorey and R. Sasaki, Nucl. Phys. B338 (1990), 689.MathSciNetCrossRefGoogle Scholar
  18. [18]
    V.G. Drinfel'd and V.V. Sokolov, J. Sov. Math. 30 (1984), 1975.CrossRefGoogle Scholar
  19. [18a]
    G. Wilson, Ergod. Th. and Dynam. Sys. 1 (1981), 361.CrossRefGoogle Scholar
  20. [18b]
    D.I. Olive and N. Turok, Nucl. Phys. B215 (1983), 470.MathSciNetCrossRefGoogle Scholar
  21. [19]
    A.V. Mikhailov, M.A. Olshanetsky and A.M. Perelomov, Comm. Math. Phys. 79 (1981), 473.MathSciNetCrossRefGoogle Scholar
  22. [20]
    P.Christe and G.Mussardo, Elastic S-matrices in (1+1) dimensions and Toda field theories, Int. J. Mod. Phys. (to appear).Google Scholar
  23. [21]
    G.Mussardo and G.Sotkov, Bootstrap program and minimal integrable models, preprint UCSBTH-89-64/ISAS-117-89.Google Scholar
  24. [22]
    G.Mussardo, Away from criticality: some results from the S-matrix approach, in [12]. M.Koca and G.Mussardo, Mass formulae in Toda field theories, preprint CERN-TH 5659/90.Google Scholar
  25. [23]
    P.G.O. Freund, T. Klassen and E. Melzer, Phys. Lett. B229 (1989), 243.MathSciNetCrossRefGoogle Scholar
  26. [24]
    R. Shankar, Phys. Lett. B92 (1980), 333.MathSciNetCrossRefGoogle Scholar
  27. [25]
    P.E.Dorey, Root Systems and Purely Elastic S-Matrices, Saclay preprint SPhT/90-169, Ph.D. thesis Durham, unpublished.Google Scholar
  28. [26]
    S.Helgason, Differential geometry, Lie groups and symmetric spaces, Acad. Press, 1978.Google Scholar
  29. [27]
    P.Christe, S-matrices of the tri-critical Ising model and Toda systems, in [12].Google Scholar
  30. [28]
    H.W.Braden, E.Corrigan, and R.Sasaki (to appear).Google Scholar
  31. [29]
    A.E. Arinshtein, V.A. Fateev and A.B. Zamolodchikov, Phys. Lett. B87 (1979), 389.CrossRefGoogle Scholar
  32. [30]
    P. Christe and G. Mussardo, Nucl. Phys B330 (1990), 465.MathSciNetCrossRefGoogle Scholar
  33. [31]
    A.B. Zamolodchikov and Al.B. Zamolodchikov, Ann. Phys. 120 (1979), 253.MathSciNetCrossRefGoogle Scholar
  34. [32]
    R.J.Eden et al, The analytic S-matrix, Cambridge University Press, 1966.Google Scholar
  35. [33]
    M.T.Grisaru, S.Penati and D.Zanon, Mass corrections in affine Toda theories based on Lie superalgebras, preprint BRX-TH-304/IFUM-390-FT.Google Scholar
  36. [34]
    H.W.Braden and R.Sasaki, The S-matrix coupling dependence for a, d and e affine Toda field theory, Phys. Lett. B, in press.Google Scholar
  37. [35]
    L.Faddeev and L.Takhtajan, Hamiltonian methods in the theory of solitons, Springer, 1987. E.K.Sklyanin, Nucl.Phys. B326 (1989), 719.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • H. W. Braden
    • 1
  • E. Corrigan
    • 2
  • P. E. Dorey
    • 3
  • R. Sasaki
    • 4
  1. 1.Department of MathematicsUniversity of EdinburghUK
  2. 2.Department of Mathematical SciencesUniversity of DurhamUK
  3. 3.Service de Physique Théorique de SaclayGif-sur-YvetteFrance
  4. 4.Uji Research Center, Yukawa Institute for Theoretical PhysicsKyotoJapan

Personalised recommendations