Advertisement

Quantum Groups pp 176-196 | Cite as

Non-local currents in 2D QFT: An alternative to the quantum inverse scattering method

  • Denis Bernard
  • André Leclair
II. Quantum Groups, Symmetries Of Dynamical Systems And Conformal Field Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)

Keywords

Quantum Group Topological Charge Yangian Symmetry Quantum Symmetry Exchange Algebra 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Coleman, J. Mandula, Phys. Rev. 159 (1967), 1251.CrossRefGoogle Scholar
  2. [2]
    E.K. Sklyanin, L.A. Takhtajan, L.D. Faddeev, Theor. Math. Phys. 40 (1980), 688.CrossRefGoogle Scholar
  3. [3]
    L.D. Faddeev, Les Houches Lectures 1982, Elsevier Science Publisher, 1984.Google Scholar
  4. [4]
    V.G. Drinfeld, Sov.Math.Dokl. 32 (1985), 254; Sov.Math.Dokl. 36 (1988), 212.Google Scholar
  5. [5]
    M. Jimbo, Lett. Math. Phys. 10 (1985), 63; Lett. Math. Phys. 11 (1986), 247; Commun. Math. Phys. 102 (1986), 537.MathSciNetCrossRefGoogle Scholar
  6. [6]
    N.Y. Reshetikhin, L.A. Takhtajan, L.D. Faddeev, Leningrad Math. J. 1 (1990), 193.MathSciNetGoogle Scholar
  7. [7]
    M. Lüscher, Nucl.Phys. B135 (1978), 1.CrossRefGoogle Scholar
  8. [8]
    D. Bernard, Hidden Yangians in 2D massive current algebras, Saclay Preprint no. SPhT-90/109; Commun. Math. Phys. (to appear).Google Scholar
  9. [9]
    D.Bernard, A.Leclair, Quantum group symmetries and non-local currents in 2D QFT, Preprint no. CLNS-90/1027 no. SPhT-90/144.Google Scholar
  10. [10]
    D.Bernard, A.Leclair, Non-local currents in 2D: the lattice approach (to appear).Google Scholar
  11. [11]
    S.L. Woronowicz, Commun. Math. Phys. 122 (1989), 125.MathSciNetCrossRefGoogle Scholar
  12. [12]
    D.Bernard, A propos du calcul differential sur les groupes quantiques, Preprint no. SPhT-90/119; a paraitre dans C.R. Acad.Sci., Paris.Google Scholar
  13. [13]
    J.Fröhlich, Cargese Lectures 1987, G 'tHooft et al (eds), Plenum, NY.Google Scholar
  14. [14]
    K. Fredenhagen, K.H. Rehren, B. Schroer, Commun. Math. Phys. 125 (1989), 201.MathSciNetCrossRefGoogle Scholar
  15. [15]
    M. Lüscher, K. Pohlmeyer, Nucl. Phys. B137 (1978), 46–54.CrossRefGoogle Scholar
  16. [16]
    E. Brezin et al., Phys. Lett. 82B (1979), 442–444.CrossRefGoogle Scholar
  17. [17]
    A.B. Zamolodchikov, Adv. Studies Pure Math. 19 (1990), 641.MathSciNetGoogle Scholar
  18. [18]
    A. Zamolodchikov, Al. Zamolodchikov, Annals Phys. 120 (1979), 252.MathSciNetCrossRefGoogle Scholar
  19. [19]
    D. Bernard, A. Leclair, Phys. Lett. B247 (1990), 309.MathSciNetCrossRefGoogle Scholar
  20. [20]
    C. Ahn, D. Bernard, A. Leclair, Nucl. Phys. B346 (1990), 409.MathSciNetCrossRefGoogle Scholar
  21. [21]
    F.A. Smirnov, Theor. Math. Phys. 60 (1987), 356; J.Phys. A19 (1986), L575.Google Scholar
  22. [22]
    O. Babelon, L. Bonora, Phys. Lett. B244 (1990), 220.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Denis Bernard
    • 1
  • André Leclair
    • 2
    • 3
  1. 1.Service de Physique Théorique de SaclayGif-sur- YvetteFrance
  2. 2.Institute of Theoretical PhysicsUniversity of CaliforniaSanta Barbara
  3. 3.Newmann Lab. of Nuclear StudiesCornell UniversityIthacaUSA

Personalised recommendations