Advertisement

Quantum Groups pp 159-175 | Cite as

Liouville theory on the lattice and universal exchange algebra for bloch waves

  • O. Babelon
II. Quantum Groups, Symmetries Of Dynamical Systems And Conformal Field Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)

Abstract

We review some aspects of Liouville theory and the relation between its integrable and conformal structures. We emphasis its lattice version which exhibits the role of quantum groups.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A.M. Polyakov, Quantum Geometry of Bosonic Strings, Phys.Lett. 103B (1981), 207.MathSciNetCrossRefGoogle Scholar
  2. [2]
    P. Zograf, L. Takhtajan, Action of Liouville equation is a generating function for the accessory parameters and the potential of the Weil-Petersson metric on the Teichmuller space, Func. Anal. Appl. 19 (1985), 219; Math. USSR Sbornik 60 (1988), 143, 297.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    J.L. Gervais, A. Neveu, Novel triangle relation and absence of tachyons in Liouville string field theory, Nucl. Phys. B238 (1984), 125.MathSciNetCrossRefGoogle Scholar
  4. [4]
    L.D. Faddeev, L. Takhtajan, Liouville model on the lattice, Springer Lecture Notes in Physics 246 (1986), 166.MathSciNetCrossRefGoogle Scholar
  5. [5]
    O. Babelon, Extended conformal algebra and the Yang-Baxter equation, Phys. Lett. B215 (1988), 523.MathSciNetCrossRefGoogle Scholar
  6. [6]
    J.M. Maillet, New integrable canonical structures in two-dimensional models, Nucl. Phys. B269 (1986), 54.MathSciNetCrossRefGoogle Scholar
  7. [7]
    A.Alekseev, L.Faddeev, M.Semenov-Tian-Shansky, A.Volkov, The unravelling of the quantum group structure in the WZNW theory, Preprint CERN Th.5981/91.Google Scholar
  8. [8]
    F.Nijhoff, V.Papageorgiou, H.Capel, Integrable Time-discrete systems: Lattices and Mappings, Preprint Clarkson University INS 166 (1990); Integrable Quantum Mappings, Preprint Clarkson University INS 168 (1991).Google Scholar
  9. [9]
    A.N. Leznov, M.V. Saveliev, Representation of zero curvature for the system of non-linear partial differential equations Open image in new window and its integrability, Lett. Math. Phys. 3 (1979), 489.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A.A. Belavin, A.M. Polyakov, A.B. Zamolodchikov, Infinite conformal symmetry in two dimensional quantum field theory, Nucl. Phys. B241 (1984), 333.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    J.L. Gervais, A. Neveu, Dimension shifting operators and null states in 2D conformally invariant field theories, Nucl. Phys. B264 (1986), 557.MathSciNetCrossRefGoogle Scholar
  12. [12]
    E.Sklyanin, On the complete integrability of the Landau-Lifshitz equation, Preprint LOMI E-3-79, Leningrad.Google Scholar
  13. [13]
    O.Babelon, D.Bernard, Dressing Transformations and the Origin of the Quantum Group Symmetries, Preprint SPhT 91/016, PAR LPTHE 91/15.Google Scholar
  14. [14]
    M. Semenov-Tian-Shansky, Dressing Transformations and Poisson Lie Group Actions, Pub. RIMS 21 (1985), 1237.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    O.Babelon, L.Bonora, F.Toppan, Exchange algebra and the Drinfeld-Sokolov theorem, Preprint SISSA 65/90/EP; Commun. Math. Phys., (to appear).Google Scholar
  16. [16]
    O. Babelon, L. Bonora, Quantum Toda Theory, Phys. Lett. 253B (1991), 365.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    L.D.Faddeev, Integrable Models in 1+1 Dimensional Quantum Field Theory, Les Houches Lectures, 1982; Elsevier, Amsterdam, 1984.Google Scholar
  18. [18]
    M. Jimbo, A q-Difference analogue of μ(G) and the Yang-Baxter equation, Lett. Math. Phys. 10 (1985), 63.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    V.G.Drinfeld, Quantum Groups, Proc. of the ICM-86, vol. 1, Berkeley, 1987, p. 798.Google Scholar
  20. [20]
    O.Babelon, Universal exchange algebra for Bloch waves and Liouville theory, Preprint PAR LPTHE 91/11; Commun. Math. Phys., (to appear).Google Scholar
  21. [21]
    J.L. Geryais, The quantum group structure of 2D gravity and minimal models, Commun. Math. Phys. 130 (1990), 257.CrossRefGoogle Scholar
  22. [22]
    J.L. Gervais, Solving the strongly coupled 2D gravity: 1. Unitary truncation and quantum group structure, Preprint LPTENS 90/13.Google Scholar
  23. [23]
    A. Volkov, Zapiski Nauch. Semin. LOMI 150 (1986), 17; Zapiski Nauch. Semin. LOMI 151 (1987), 24, (To be translated in Sov. Jour. Math.).Google Scholar
  24. [24]
    A. Volkov, Miura transformation on the lattice, Theor. Math. Phys. 74 (1988), 135.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    O. Babelon, Exchange formula and lattice deformation of the Virasoro algebra, Phys. Lett. 238B (1990), 234.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    O.Babelon, Integrable systems associated to the lattice version of the Virasoro algebra. I. The classical open chain, Talk given at the Workshop “Integrable systems and quantum groups” Pavia March 1–2 1990. Preprint PAR LPTHE 90/5.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • O. Babelon
    • 1
  1. 1.Laboratoire de Physique Théorique et Hautes EnergiesUniversité Pierre et Marie CurieParis Cedex 05France

Personalised recommendations