Advertisement

Quantum Groups pp 148-158 | Cite as

Hidden quantum groups inside Kac-Moody algebras

  • A. Alekseev
  • L. Faddeev
  • M. Semenov-Tian-Shansky
II. Quantum Groups, Symmetries Of Dynamical Systems And Conformal Field Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M.A. Semenov-Tian-Shansky, Publ.RIMS 21(no.6) (1985), 1237–1260, Kyoto Univ.MathSciNetCrossRefGoogle Scholar
  2. [2]
    N.Yu. Reshetikhin and M.A. Semenov-Tian-Shansky, Lett.Math.Phys. 19 (1990), 133–142.MathSciNetCrossRefGoogle Scholar
  3. [3]
    O. Babelon, Phys.Lett. B215 (1988), 523–527.MathSciNetCrossRefGoogle Scholar
  4. [4]
    B.Blok, Tel-Aviv University preprint (1989).Google Scholar
  5. [5]
    A. Alekseev and S. Shatashvili, Commun.Math.Phys. 133 (1990), 353–368.MathSciNetCrossRefGoogle Scholar
  6. [6]
    L.D. Faddeev, Commun.Math.Phys. 132 (1990), 131–138.MathSciNetCrossRefGoogle Scholar
  7. [7]
    L.D.Faddeev, Lectures given in Schladming (1989).Google Scholar
  8. [8]
    A.Alekseev,L.D.Faddeev,M.A.Semenov-Tian-Shansky and A.Volkov, The unravelling of the quantum group structure in the WZNW theory, Preprint CERN-TH-5981/91 (1991).Google Scholar
  9. [9]
    V.Drinfeld, Quantum groups, Proc.ICM-86 Berkeley, California, USA, 1986, 1987, pp. 798–820.Google Scholar
  10. [10]
    L.D. Faddeev, N.Yu. Reshetikhin and L.A. Takhtajan, Alg. Anal. 1 no. 1 (1989), 178–206. (in Russian)MathSciNetGoogle Scholar
  11. [11]
    V. Drinfeld, Alg. Anal. 1 no. 2 (1989), 30–47. (in Russian)MathSciNetGoogle Scholar
  12. [12]
    N.Yu. Reshetikhin, Alg. Anal. 1 no. 2 (1989), 169–189. (in Russian)MathSciNetGoogle Scholar
  13. [13]
    V. Drinfeld, Alg. Anal. 1 no. 6 (1989), 114–149. (in Russian)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • A. Alekseev
    • 1
  • L. Faddeev
    • 1
  • M. Semenov-Tian-Shansky
    • 1
  1. 1.Leningrad Branch of Steklov Mathematical InstituteLeningradUSSR

Personalised recommendations