Advertisement

Quantum Groups pp 142-147 | Cite as

Zonal spherical functions on quantum symmetric spaces and MacDonald's symmetric polynomials

  • Kimio Ueno
  • Tadayoshi Takebayashi
I. Quantum Groups, Deformation Theory And Representation Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)

Abstract

We will study zonal spherical functions on quantum symmetric space GL q (N+1)/O q (N+1)), and will show that those for the case N=2 are given by Macdonald's polynomials of the A2 type. Some q-analogues of hypergeometric series associated with the quantum symmetric spaces will be discussed.

Key words and phrases

Zonal spherical functions quantum symmetric spaces Macdonald's symmetric polynomials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Jimbo, M., A q-analogue of U q(gl(N + 1)), Hecke algebra, and the Yang-Baxter equation, Lett. Math.Phys. 11 (1986), 247.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    Ueno, K., Takebayashi, T. and Shibukawa, Y., Construction of Gelfand-Tsetlin basis for U q(gl(n + 1))-modules, Publ.of RIMS 26 no. 1 (1990), 667.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Macdonald, I.G., Orthogonal polynomials associated with root systems, Preprint.Google Scholar
  4. [4]
    Macdonald, I.G., Symmetric functions and Hall polynomials, Oxford University Press, 1979.Google Scholar
  5. [5]
    Jackson, F.H., On basic double hypergeometric functions., Quart.J.Math. 13 (1942), 69.MathSciNetCrossRefzbMATHGoogle Scholar
  6. [6]
    Gasper, G. and Rahman, M., Basic Hypergeometric Series, Encyclopedia of Mathematics and its Applications 34 (1990), Cambridge University Press, Cambridge.zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Kimio Ueno
    • 1
  • Tadayoshi Takebayashi
    • 1
  1. 1.Department of MathematicsWaseda UniversityTokyoJapan

Personalised recommendations