Advertisement

Rank of quantum groups and braided groups in dual form

  • Shahn Majid
I. Quantum Groups, Deformation Theory And Representation Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)

Abstract

We give a dual formulation of recent work on the representation theory of general quantum groups. These form a rigid quasitensor category C to which is associated a braided group Aut(C) of braided-commutative “co-ordinate functions” analogous to the ring of functions on a group or supergroup. Every dual quasitriangular Hopf algebra A gives rise to such a braided group A. We give the example of the braided group BSL(2) in detail. We also give the rank of quantum groups in dual form and explain its connection with the partition function of simple quantum systems.

Keywords

Partition Function Hopf Algebra Quantum Group Braided Group Monoidal Category 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S.Majid, Reconstruction Theorems and rational conformal field theories, to appear Int.J.Mod. Phys.A. (1989).Google Scholar
  2. [2]
    S.Majid, Braided group and algebraic quantum field theories, Preprint (1990); Some physical applications of category theory, Lec. Notes Phys., Springer (to appear).Google Scholar
  3. [3]
    S. Majid, Quasitriangular Hopf algebras and Yang-Baxter Equations, Int. J. Modern Physics A 5(1) (1990), 1–91.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [4]
    S. Majid, Representation theoretic rank and double Hopf algebras, Comm. Algebra 18 (1990); 3705–3712.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    S.Majid and Ya.S. Soibelman, Rank of quantized universal enveloping algebras and modular functions, to appear Comm. Math. Phys. (1990).Google Scholar
  6. [6]
    S.Majid and Ya.S. Soibelman, Chern-Simons theory, modular functions and quantum mechanics in an alcove, to appear Int. J. Math. Phys. (1990).Google Scholar
  7. [7]
    L.D. Faddeev, N.Yu. Reshetikhin, L.A. Takhtajan, Quantization of Lie groups and Lie algebras, Algebra Anal. 1(1) (1989), 178–206.MathSciNetGoogle Scholar
  8. [8]
    N.Yu. Reshetikhin, V.G. Turaev, Ribbon graphs and their invariants derived from quantum groups, Comm. Math. Phys. 127 (1990), 1–26.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    A.Joyal and R.Street, Braided monoidal categories, Macquarie Reports 86008 (1986).Google Scholar
  10. [10]
    P.Deligne and J.S.Milne, Tannakian categories, Lec. Notes in Math. 900 Springer (1982).Google Scholar
  11. [11]
    V.G. Drinfeld, Quantum groups, Proc. ICM-86(Berkeley) 1 (1987), 798–820.MathSciNetGoogle Scholar
  12. [12]
    S.Majid, Quantum groups and quantum probability, to appear in Quantum probability and Applications, Trento, Kluwer (1989).Google Scholar
  13. [13]
    S.Majid, Representations, duals and quantum doubles of monoidal categories, to appear in Suppl. Rend. Circ. Mat. Palermo (1989).Google Scholar
  14. [14]
    S.Majid, Braided groups, Preprint (1990).Google Scholar
  15. [15]
    N.Saavedra Rivano, Catégories Tannakiennes, Lec. Notes in Math. 265 Springer (1972).Google Scholar
  16. [16]
    D. Yetter, Quantum groups and representations of monoidal categories, Math Proc. Cam. Phil. Soc. 108 (1990), 261–290.MathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    K.-H.Ulbrich, On Hopf algebras and rigid monoidal categories, to appear Isr. J. Math. (1989).Google Scholar
  18. [18]
    K.Fredenhagen, K.-H.Rehren, B.Schroer, On Hopf algebras and rigid monoidal categories, Comm. Math.Phys. 125, 201. R.Longo, Comm. Math.Phys. 126 (1989), 217.Google Scholar
  19. [19]
    S. Doplicher and J.E. Roberts, A new duality theorem for compact groups, Inv. Math.Phys. 985 (1989), 157–218.MathSciNetCrossRefzbMATHGoogle Scholar
  20. [20]
    S.Majid, Examples of braided groups and braided matrices, Preprint (1990).Google Scholar
  21. [21]
    A.Connes, Non-commutative differential geometry, IHES 62 (1986).Google Scholar
  22. [22]
    N.Ya.Manin, Noncommutative geometry and quantum groups, Monthreal Notes (1988). A.Rozenberg, Hopf algebras and Lie algebras in categories with multiplication, preprint (1978). (in Russian) D.Gurevich, Stockholm Math. Rep. 24 (1986), 33–122 25 (1988), 1–16.Google Scholar
  23. [23]
    P.P.Kulish, Quantum superalgebra osp(2 1), preprint RIMS-615 (1988). M.Chaichan and P.P.Kulish, Phys.Lett.B 234 (1990), 72–80.Google Scholar
  24. [24]
    S.Majid, More examples of double cross product Hopf algebras, Isr.J.Math. 71(3) (1990).Google Scholar
  25. [25]
    V.V.Lyubashenko, Tensor categories and RCFT,I,II, preprints (1990).Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Shahn Majid
    • 1
  1. 1.Department of Applied Mathematics & Theoretical Physics University of CambridgeCambridgeU.K.

Personalised recommendations