Advertisement

Real and imaginary forms of quantum groups

  • Vladimir Lyubashenko
I. Quantum Groups, Deformation Theory And Representation Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)

Abstract

Existing definition of a real form of quantum group as a *-Hopf algebra is not quite satisfactory from the categorical point of view. In this paper another definition is proposed, which essentially coincides with the previous one for q∈ℝ and yields new examples for |q|=1. The last case is important because of applications of quantum groups to conformal field theory.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [DM]
    Deligne P., Milne J.S., Tannakian Categories, Lect. Notes Math. 900 (1982), 101–228, Springer, Berlin a.o..MathSciNetCrossRefzbMATHGoogle Scholar
  2. [D]
    Drinfeld, V.G., Quantum groups, Proc. of the ICM-86 1 (1987), 798–820, Berkeley.MathSciNetGoogle Scholar
  3. [GG]
    Goto, M., Grosshans, F.D., Semisimple Lie algebras, Lect.Notes Pure Appl.Math. 38 (1978), Marsel Dekker, N.Y. and Basel.Google Scholar
  4. [J]
    Jimbo, M., A q-Difference Analogue of U q (g) and the Yang-Baxter Equation, Lett.Math.Phys. 10 (1985), 63–69.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [KhT]
    Khoroshkin, S.M., Tolstoy, V.N., Universal R-matrix for quantum supergroups (to appear).Google Scholar
  6. [KR]
    Kirillov, A.N., Reshetikhin, N.Yu., q-Weyl Group and a Multiplicative Formula for Universal R-matrices, Commun. Math. Phys. 134 (1991), 421–431.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [LS]
    Levendorskii, S., Soibelman, Ya., Some applications of the quantum Weyl group, Preprint (1989).Google Scholar
  8. [Lu]
    Lusztig, G., Finite dimensional Hopf algebras arising from quantum groups, Preprint.Google Scholar
  9. [Lyu]
    Lyubashenko, V.V., Tensor categroies and RCFT. I. Hopf algebras in rigid categories, Preprint no. ITP-90-30E (1990), Kiev; Tensor categories and RCFT. II. Modular transformations, Preprint no. ITP-90-59E (1990), Kiev.Google Scholar
  10. [M]
    Majid S., Duals and Doubles of Monoidal Categories, Preprint no. DAMTP/89-41 (1989).Google Scholar
  11. [R]
    Reshetikhin, N.Yu., Quasitriangular Hopf algebras, solutions of the Yang-Baxter equation and invariants of links, Algebra Anal 1 no. 2 (1989), 169–194. (in Russian)MathSciNetGoogle Scholar
  12. [Sa]
    Saavedra, R.N., Catégories Tannakiennes, Lect. Notes Math. 265 (1972), 420, Springer, Heidelberg.zbMATHGoogle Scholar
  13. [So]
    Soibelman, Ya.S., Quantum Weyl group and some of its applications, Supl.Rend.Circ.Mat.Palermo (1990), (to appear).Google Scholar
  14. [T]
    Turaev, V.G., Operator invariants of links and R-matrices, Izv.Akad.Nauk SSSR, Ser.Mat. 53 no. 5 (1989), 1073–1107. (in Russian)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Vladimir Lyubashenko
    • 1
  1. 1.Kiev Polytechnical InstituteKievUSSR

Personalised recommendations