Real and imaginary forms of quantum groups

  • Vladimir Lyubashenko
I. Quantum Groups, Deformation Theory And Representation Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)


Existing definition of a real form of quantum group as a *-Hopf algebra is not quite satisfactory from the categorical point of view. In this paper another definition is proposed, which essentially coincides with the previous one for q∈ℝ and yields new examples for |q|=1. The last case is important because of applications of quantum groups to conformal field theory.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [DM]
    Deligne P., Milne J.S., Tannakian Categories, Lect. Notes Math. 900 (1982), 101–228, Springer, Berlin a.o..MathSciNetCrossRefzbMATHGoogle Scholar
  2. [D]
    Drinfeld, V.G., Quantum groups, Proc. of the ICM-86 1 (1987), 798–820, Berkeley.MathSciNetGoogle Scholar
  3. [GG]
    Goto, M., Grosshans, F.D., Semisimple Lie algebras, Lect.Notes Pure Appl.Math. 38 (1978), Marsel Dekker, N.Y. and Basel.Google Scholar
  4. [J]
    Jimbo, M., A q-Difference Analogue of U q (g) and the Yang-Baxter Equation, Lett.Math.Phys. 10 (1985), 63–69.MathSciNetCrossRefzbMATHGoogle Scholar
  5. [KhT]
    Khoroshkin, S.M., Tolstoy, V.N., Universal R-matrix for quantum supergroups (to appear).Google Scholar
  6. [KR]
    Kirillov, A.N., Reshetikhin, N.Yu., q-Weyl Group and a Multiplicative Formula for Universal R-matrices, Commun. Math. Phys. 134 (1991), 421–431.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [LS]
    Levendorskii, S., Soibelman, Ya., Some applications of the quantum Weyl group, Preprint (1989).Google Scholar
  8. [Lu]
    Lusztig, G., Finite dimensional Hopf algebras arising from quantum groups, Preprint.Google Scholar
  9. [Lyu]
    Lyubashenko, V.V., Tensor categroies and RCFT. I. Hopf algebras in rigid categories, Preprint no. ITP-90-30E (1990), Kiev; Tensor categories and RCFT. II. Modular transformations, Preprint no. ITP-90-59E (1990), Kiev.Google Scholar
  10. [M]
    Majid S., Duals and Doubles of Monoidal Categories, Preprint no. DAMTP/89-41 (1989).Google Scholar
  11. [R]
    Reshetikhin, N.Yu., Quasitriangular Hopf algebras, solutions of the Yang-Baxter equation and invariants of links, Algebra Anal 1 no. 2 (1989), 169–194. (in Russian)MathSciNetGoogle Scholar
  12. [Sa]
    Saavedra, R.N., Catégories Tannakiennes, Lect. Notes Math. 265 (1972), 420, Springer, Heidelberg.zbMATHGoogle Scholar
  13. [So]
    Soibelman, Ya.S., Quantum Weyl group and some of its applications, Supl.Rend.Circ.Mat.Palermo (1990), (to appear).Google Scholar
  14. [T]
    Turaev, V.G., Operator invariants of links and R-matrices, Izv.Akad.Nauk SSSR, Ser.Mat. 53 no. 5 (1989), 1073–1107. (in Russian)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Vladimir Lyubashenko
    • 1
  1. 1.Kiev Polytechnical InstituteKievUSSR

Personalised recommendations