Advertisement

Quantum symmetry

  • Murray Gerstenhaber
  • Anthony Giaquinto
  • Samuel D. Schack
I. Quantum Groups, Deformation Theory And Representation Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)

Keywords

Hopf Algebra Quantum Group Formal Power Series Hilbert Series Tensor Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    M. Artin and W. Schelter, Graded Algebras of Global Dimension 3, Adv. Math. 66 (1987), 171.MathSciNetCrossRefzbMATHGoogle Scholar
  2. [2]
    K. Brown, Buildings, Springer Verlag, New York, 1990.zbMATHGoogle Scholar
  3. [3]
    V.Coll, Universal Deformation Formulae, Ph.D. thesis, University of Pennsylvania (1990).Google Scholar
  4. [4]
    V.Coll, M.Gerstenhaber and A.Giaquinto, An Explicit Deformation Formula With Noncommuting Derivations, Israel Math. Conf. Proc., vol. 1, Weizmann Science Press, 1989, pp. 396–403.Google Scholar
  5. [5]
    E.E.Deminov, Yu.I.Manin, E.E.Mukhin, and D.V.Zhdanovich, Non-Standard Quantum Deformations of GL(n) and Constant Solutions of the Yang-Baxter Equation, Kyoto University preprint (May 1990).Google Scholar
  6. [6]
    R.Dipper and S.Donkin, Quantum GL(n), preprint (1990).Google Scholar
  7. [7]
    V.G. Drinfel'd, Quantum Groups, Proc. ICM-86, Berkeley 1 (1987), 798–820.MathSciNetzbMATHGoogle Scholar
  8. [8]
    L.D. Faddeev, N.Y. Reshetikhin and L.A. Takhtajan, Quantization of Lie Groups and Lie Algebras, Leningrad Math. J. 1 (1990), 193–225.MathSciNetzbMATHGoogle Scholar
  9. [9]
    A. Froelicher and A. Nijenhuis, A Theorem on Stability of Complex Structures, Proc. Nat. Acad. Sci. 43 (1957), 239–241.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    M. Gerstenhaber, The Cohomology Structure of an Associative Ring, Ann. Math. 78 (1963), 267–288.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    M. Gerstenhaber, On the Deformation of Rings and Algebras, Ann. Math. 79 (1964), 59–103.MathSciNetCrossRefzbMATHGoogle Scholar
  12. [12]
    M. Gerstenhaber, On the Deformation of Rings and Algebras III, Ann. Math. 88 (1968), 1–34.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    M. Gerstenhaber, On the Deformation of Rings and Algebras IV, Ann. Math. 99 (1974), 257.MathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    M. Gerstenhaber and S.D. Schack, Relative Hochschild Cohomology, Rigid Algebras, and the Bockstein, J. Pure and Appl. Alg. 43 (1986), 53–74.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    M. Gerstenhaber and S.D. Schack, A Hodge-type Decomposition for Commutative Algebra Cohomology, J. Pure and Appl. Alg. 48 (1987), 229–247.MathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    M. Gerstenhaber and S.D. Schack, The Cohomology of Presheaves of Algebras I: Presheaves over a Partially Ordered Set, Trans. Amer. Math. Soc. 310 (1988), 135–165.MathSciNetzbMATHGoogle Scholar
  17. [17]
    M. Gerstenhaber and S.D. Schack, Algebraic Cohomology and Deformation Theory, Deformation Theory of Algebras and Structures and Applications, M. Hazewinkel and M. Gerstenhaber, eds., Kluwer, Dordrecht, 1988, pp. 11–264.CrossRefGoogle Scholar
  18. [18]
    M. Gerstenhaber and S.D. Schack, Bialgebra Cohomology, Deformations and Quantum Groups, Proc. Nat. Acad. Sci. 87 (1990), 478–481.MathSciNetCrossRefzbMATHGoogle Scholar
  19. [19]
    A. Giaquinto, Deformation Methods in Quantum Groups, Ph. D. Thesis (1991).Google Scholar
  20. [20]
    G. Hochschild, B. Kostant, and A. Rosenberg, Differential Forms on Regular Affine Algebras, Trans. Amer. Math. Soc. 102 (1962), 383–408.MathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    D.Knuth, The Art of Computer Programming, V. 3, Addison Wesley, 1973.Google Scholar
  22. [22]
    M. Jimbo, A q-difference analogue of U(g), Lett. Math. Phys. 10 (1985), 63–69.MathSciNetCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Lichnerowitz, Quantum Mechanics and Deformations of Geometrical Dynamics, Quantum Theory, Groups, Fields, and Particles, A.O. Barut, ed., Reidel, Dordrecht.Google Scholar
  24. [24]
    G. Lusztig, Quantum Groups at Roots of 1, Geometriae Dedicata 35 (1990), 89–113.MathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    Yu.Manin, Quantum Groups and Non-Commutative Geometry, Les Publ. du CRM 1561 (1988), Universite de Montreal.Google Scholar
  26. [26]
    S. Montgomery and S.P. Smith, Skew Derivations and U q(sl(2)), Israel J. Math. 72 (1990), 158.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [27]
    J.E. Moyal, Quantum Mechanics as a Statistical Theory, Proc. Cambridge Phil. Soc. 45 (1949), 99–124.MathSciNetCrossRefzbMATHGoogle Scholar
  28. [28]
    A. Nijenhuis and R. Richardson, Cohomology and Deformations of Graded Lie Algebras, Bull. Amer. Math. Soc. 72 (1966), 1–29.MathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    R. Richardson, On the Rigidity of Semi-direct Products of Lie Algebras, Pac. J. Math. 22 (1967), 339–344.MathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    W. Singer, Extension Theory for Connected Hopf Algebras, J. Alg. 21 (1972), 1–16.MathSciNetCrossRefzbMATHGoogle Scholar
  31. [31]
    L.Sudberry, Consistent Multiparametric Deformations of GL(n), preprint (1990).Google Scholar
  32. [32]
    L.A. Takhtajan, Introduction to Quantum Groups, LNP 370 (1990), 3–28.MathSciNetGoogle Scholar
  33. [33]
    O. Villamayor and D. Zelinsky, Galois Theory for Rings with Finitely Many Idempotents, Nagoya Math. J. 27 (1966), 721–731.MathSciNetzbMATHGoogle Scholar
  34. [34]
    W. Waterhouse, Introduction to Affine Group Schemes, Springer Verlag, New York, 1979.CrossRefzbMATHGoogle Scholar
  35. [35]
    S.L. Woronowicz, Twisted SU(2)-group: An Example of a Non-commutative Differential Calculus, Publ. RIMS Kyoto Univ. 23 (1987), 117–181.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Murray Gerstenhaber
    • 1
  • Anthony Giaquinto
    • 2
  • Samuel D. Schack
    • 3
  1. 1.Department of Mathematics, David Rittenhouse LaboratoryUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.University of MichiganUSA
  3. 3.State University of New York at BuffaloUSA

Personalised recommendations