Advertisement

On some unsolved problems in quantum group theory

  • V. G. Drinfeld
I. Quantum Groups, Deformation Theory And Representation Theory
Part of the Lecture Notes in Mathematics book series (LNM, volume 1510)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Drinfeld V.G., Quantum groups, Proc. ICM-86 (Berkeley) 1 (1987), 798–820.MathSciNetGoogle Scholar
  2. [2]
    Deligne P. and Milne J., Tannakian categories, Lect. Notes Math. 900 (1982), 101–228.MathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    Drinfeld V.G., On constant, quasiclassical solutions of the quantum Yang-Baxter equation, Sov. Math. Dokl. 28 (1983), 667–671.zbMATHGoogle Scholar
  4. [4]
    Moreno C. et Valero L., Produits star invariants et équation de Yang-Baxter quantique constante, Dans les Actes des Journées Relativistes (24–29 avril 1990, Aussois, France).Google Scholar
  5. [5]
    Drinfeld V.G., Quasi-Hopf algebras, Algebra Anal. 1 no. 6 (1989), 114–148. (in Russian)MathSciNetGoogle Scholar
  6. [6]
    Drinfeld V.G., On quasitriangular quasi-Hopf algebras and a group closely connected with(ℚ/ℚ, Algebra Anal. 2 no. 4 (1990), 149–181. (in Russian)MathSciNetGoogle Scholar
  7. [7]
    Jimbo M., A q-difference analogue of U(g) and the Yang-Baxter equation, Lett.Math.Phys. 10 (1985), 63–69.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Lusztig G., Quantum deformations of certain simple modules over enveloping algebras, Adv. Math. 70 (1988), 237–249.MathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    Drinfeld V.G., On almost cocommutative Hopf algebras, Leningrad Math. J. 1 no. 2 (1990), 321–342.MathSciNetzbMATHGoogle Scholar
  10. [10]
    Kac V.G., Infinite dimensional Lie algebras, Birkhäuser, Boston a.o., 1983.Google Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • V. G. Drinfeld
    • 1
  1. 1.Physical & Technical Institute of Low TemperaturesKharkovUSSR

Personalised recommendations