Skip to main content

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1574))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander H., Proper holomorphic mappings inn, Indiana Univ. Math. J. 26 (1977), 137–146.

    Article  MathSciNet  Google Scholar 

  2. Tumanov A. E., Henkin G. M., Local characterization of analytic automorphisms of classical domains, Doklady Akad. Nauk SSSR 267 (1982), no. 4, 796–799 (Russian); English transl. in Soviet Math. Dokl. 26 (1982), no. 3, 702–705.

    MathSciNet  Google Scholar 

  3. Aleksandrov A. D., On the foundations of relativity theory, Vestnik Leningr. Gos. Univ. 19 (1976), 5–28. (Russian)

    MathSciNet  MATH  Google Scholar 

  4. Aleksandrov A. B., The existence of inner functions in the ball, Matem. Sb. 118 (1982), 147–163 (Russian); English transl. in Math. USSR Sbornik 46 (1983), no. 2, 143–159.

    MathSciNet  MATH  Google Scholar 

  5. Rudin W., Holomorphic maps that extend to automorphism of a ball, Proc. Amer. Soc. 81 (1981), 429–432.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bell S. R., Proper holomorphic mapping between circular domains, Comm. Math. Helv. 57 (1982), 532–538.

    Article  MATH  Google Scholar 

References

  1. Bedford E., On the automorphism group of a Stein manifold, Math. Ann. 266 (1983), 215–227.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bedford E., Pinchuk S. I., Domains in2 with noncompact holomorphic automorphism group, Mat. Sb. 135 (177) (1988), 147–157. (Russian)

    MATH  Google Scholar 

  3. Eremenko A., On the characterization of a Riemann surface by its semigroup of endomorphisms, preprint, 1991.

    Google Scholar 

  4. Hinkkanen A. (1990), Private communications.

    Google Scholar 

  5. Peschl E., Automorphismes holomorphes de l’éspace à n dimensions complexes, C. R. Acad. Sci. Paris 242 (1956), 1836–1838.

    MathSciNet  MATH  Google Scholar 

  6. Rosay J.-P., Rudin W., Holomorphic maps fromn to ℂn, Trans. Amer. Math. Soc. 310 (1988), 47–86.

    MathSciNet  MATH  Google Scholar 

  7. Rudin W., Function Theory in the Unit Ball ofn, Springer-Verlag, 1980.

    Google Scholar 

  8. Schoenfield J. R., Mathematical Logic, Addison-Wesley, Reading, Mass., 1967.

    Google Scholar 

References

  1. Barth T., The Kobayashi indicatrix at a center of a circular domain, Proc. Amer. Math. Soc. 88 (3) (1983), 527–530.

    Article  MathSciNet  MATH  Google Scholar 

  2. Jarnicki M., Pflug P., Bergman completeness of complete circular domains, Ann. Pol. Math. 50 (1989), 219–222.

    MathSciNet  MATH  Google Scholar 

  3. Jarnicki M., Pflug P., A counterexample for Kobayashi completeness of balanced domains, Proc. Amer. Math. Soc. (1991).

    Google Scholar 

  4. Jarnicki M., Pflug P., Vigué J.-P., The Carathéodory distance does not define the topology —the case of domains, C. R. Acad. Sci. Paris 312(I) (1991), 77–79.

    MathSciNet  MATH  Google Scholar 

  5. Pflug P., About the Carathéodory completeness of all Reinhardt domains, Functional Analysis, Holomorphy and Approximation Theory (G. I. Zapata, ed.), North Holland, Amsterdam, 1984, pp. 331–337.

    Google Scholar 

References

  1. Privalov I. I., Boundary properties of analytic functions, Gostekhizdat, Moscow, 1950. (Russian)

    Google Scholar 

  2. Henkin G. M., Chirka E. M., Boundary properties of holomorphic functions of several complex variables, Modern problems of mathematics Vol. 4, Itogi Nauki i Tekhniki, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1975, pp. 13–142 (Russian)

    MATH  Google Scholar 

  3. Aizenberg L. A., Carleman formulas in complex analysis. First applications, Nauka, Novosibirsk, 1990. (Russian)

    Google Scholar 

  4. Fok V. A., Kuni F. M. On the “cutting” function in dispersion relations, Dokl. Akad. Nauk SSSR 127 (1959), 1195–1198 (Russian)

    MATH  Google Scholar 

  5. Aizenberg L. A., Kytmanov A. M., On the possibility of holomorphic extension of functions defined on a connected piece of the boundary, IF SOAN SSSR (Preprint no. 50M), Krasnoyarsk, 1990 (Russian); vol. 4, 1991.

    Google Scholar 

  6. Aizenberg L. A., Kytmanov A. M., On the possibility of holomorphic extension of functions defined on a connected piece of the boundary. II, Mat. Sbornik (to appear). (Russian)

    Google Scholar 

References

  1. Pinchuk S. I., Tsyganov Sh. I., Smoothness of CR-mappings of strongly pseudoconvex hypersurfaces, Izv. Akad. Nauk SSSR Ser. Mat. 53 (1989), 1020–1029. (Russian)

    Google Scholar 

  2. Khurumov Yu. V., Boundary smoothness of proper holomorphic mappings of strictly pseudoconvex domains, Mat. Zametki 48 (1990), no. 6, 149–150. (Russian)

    MathSciNet  MATH  Google Scholar 

  3. Pinchuk S., CR transformations of real manifolds inn, preprint MPI/90-37, Max-Planck-Institut für Matematik, Bonn, 1990.

    Google Scholar 

  4. Pinchuk S. I., Holomorphic non-equivalence of some classes of domains inn, Mat. Sb. 111 (1980), 67–94 (Russian)

    MathSciNet  MATH  Google Scholar 

  5. Tumanov A. E., Henkin G. M., Local characterization of holomorphic automorphisms of Siegel domains, Funktsional. Anal. i Prilozhen. 17 (1983), no. 4, 49–61 (Russian)

    MathSciNet  Google Scholar 

  6. Pinchuk S. I., Holomorphic mappings inn and the holomorphic equivalence problem, Current Problems in Mathematics. Fundamental directions, Vol. 9, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986, pp. 195–223 (Russian); English transl. in Encyclopaedia of Mathematical Sciences, Vol. 9 Springer-Verlag, 1989.

    Google Scholar 

  7. Tumanov A. E., Geometry of CR-manifolds, Current Problems in Mathematics. Fundamental directions, Vol. 9, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1986, pp. 225–246 (Russian); English transl. in Encyclopaedia of Mathematical Sciences, Vol. 9, Springer-Verlag, 1989.

    Google Scholar 

  8. Forstnerič, Proper holomorphic mappings: a survey, Preprint Series Dept. Math. University E.K. Ljubljana 27 (1989), no. 268, 1–48.

    Google Scholar 

  9. Khurumov Yu. V., Smoothness of proper holomorphic mappings and invariant metrics of strictly pseudoconvex domains. In: Actual questions of complex analysis, Tashkent, 1989, p. 136. (Russian)

    Google Scholar 

  10. Pushnikov A. Yu., Holomorph CR-mappings into a space of greater dimension, Mat. Zametki 48 (1990), no. 3, 147–149. (Russian)

    MathSciNet  MATH  Google Scholar 

  11. Pushnikov A. Yu., Symmetry principle and regularity of CR-mappings of real-analytic manifolds, Thesis, Ufa, 1990. (Russian)

    Google Scholar 

  12. Rabotin V. V., Rationality of proper holomorphic mappings of balls of different dimensions, In: Complex analysis and mathematical physics, Krasnoyarsk, 1987, p. 91. (Russian)

    Google Scholar 

  13. Rabotin V. V., Holomorphic mappings of complex manifolds and related extremal problems of CR-mappings of real-analytic manifolds, Thesis, Novosibirsk, 1988. (Russian)

    Google Scholar 

  14. Forstnerič, Extending proper holomorphic mappings of positive codimension, Invent. Math. 95 (1989), 31–62.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Alexander H., This collection, 17.12.

    Google Scholar 

  2. Alexander H., Totally real sets in2, Proc. Amer. Math. Soc. 111 (1991), 131–133.

    MathSciNet  Google Scholar 

  3. Duchamp T., Intersections of totally real and holomorphic discs, preprint, 1990.

    Google Scholar 

  4. Duval J., Un example de disque polynômialement convex, Ann. Math. 281 (1988), 583–588.

    Article  MathSciNet  MATH  Google Scholar 

  5. Duval J., Convexité rationelle des surfaces Lagrangiennes, Invent. Math. 104 (1991) 581–599.

    Article  MathSciNet  MATH  Google Scholar 

  6. Forstnerič F., Complex tangent of real surfaces in complex surfaces, preprint, 1991.

    Google Scholar 

  7. Forstnerič F., A smooth holomorphically convex disc in2 that is not locally polynomially convex, preprint, 1991.

    Google Scholar 

  8. Forstnerič F., Stout E. L., A new class of polynomially convex sets, Ark. Mat. 29 (1991), 51–62.

    Article  MathSciNet  MATH  Google Scholar 

  9. Hörmander L., Wermer J., Uniform approximation on compact subsets inn, Math. Scand. 22 (1968), 5–21.

    MathSciNet  MATH  Google Scholar 

  10. Jöricke B., Removable singularities of CR-functions, Ark. Mat. 26 (1988), 117–143.

    Article  MathSciNet  MATH  Google Scholar 

  11. Nirenberg R., Wells R. O., Approximation theorems on differentiable submanifolds of a complex manifold, Trans. Amer. Math. Soc. 142 (1969), 15–35.

    Article  MathSciNet  MATH  Google Scholar 

  12. Stolzenberg G., Polynomially and rationally convex sets, Acta Math. 109 (1963), 259–289.

    Article  MathSciNet  MATH  Google Scholar 

  13. Stolzenberg G., Uniform approximation on smooth curves, Acta Math. 115 (1966), 185–198.

    Article  MathSciNet  MATH  Google Scholar 

  14. Stout E. L., Removable singularities for the boundary values of holomorphic functions (to appear).

    Google Scholar 

  15. Vladimirov V. S., Fonctions de plusierus variables complexes, Dunord, Paris, 1982.

    Google Scholar 

  16. Wermer J., Polynomially convex discs, Math. Ann. 158 (1965), 6–10.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Sergeev A. G., Henkin G. M., Uniform estimates of solutions of ∂-equation in pseudoconvex polyhedra, Mat. Sb. 112 (1980), no. 4, 522–567. (Russian)

    MathSciNet  Google Scholar 

  2. Sergeev A. G., Complex geometry and integral representations in the future tube, Izv. Akad. Nauk SSSR Ser. Mat. 50 (1986), no. 6, 1241–1275. (Russian)

    MathSciNet  MATH  Google Scholar 

  3. Tsyganov Sh. I., Holomorphic non-rectifiability of the boundary of the future tube, In: Actual questions of complex analysis, Tashkent, 1989, p. 136. (Russian)

    Google Scholar 

  4. Vladimirov V. S., Generalized functions in mathematical physics, Nauka, Moscow (1979). (Russian)

    MATH  Google Scholar 

  5. Sergeev A. G., On complex analysis in tube cones, In: Proc. Summer. Inst. on Several Compl. Variables, AMS, Providence, 1990.

    Google Scholar 

  6. Sergeev A. G., On behaviour of solutions of the \(\bar \partial\)-equation on the boundary of the future tube, Dokl. Akad. Nauk SSSR 298 (1988), no. 2, 294–298. (Russian)

    Google Scholar 

  7. Sibony N., Un exemple de domaine pseudoconvexe régulier ou l’équation \(\bar \partial\) u =f n’admet pas de solution bornée pour f bornée. Invent. Math. 62 (1980), no. 2, 235–242.

    Article  MathSciNet  MATH  Google Scholar 

  8. Henkin G. M., Leiterer J., Theory of Functions on Complex Manifolds, Akademie-Verlag, Berlin, 1984.

    Google Scholar 

  9. Vladimirov V. S., Sergeev A. G., Complex analysis in the future tube, Current Problems in Mathematics. Fundamental directions, Vol. 8, Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Techn. Inform., Moscow, 1985, pp. 191–266 (Russian); English transl. in Encyclopedia of Mathematical Sciences, Vol. 8 Springer-Verlag, 1989.

    MATH  Google Scholar 

References

  1. Vladimirov V. S., Analytic functions of several complex variables and axiomatic quantum field theory, Actes Congres Int. Math. (Nice, 1970), vol. 3, Gauthier-Villars, Paris, 1971, pp. 21–26.

    Google Scholar 

  2. Vladimirov V. S., Zharinov V. V., Analytic methods in mathematical physics, Trudy Math. Inst. Steklov 175 (1988), 117–138. (Russian)

    MathSciNet  MATH  Google Scholar 

  3. Wightman A. S., Quantum field theory and analytic functions of several complex variables, J. Indian Math. Soc. 24 (1961), 625–677.

    MathSciNet  MATH  Google Scholar 

  4. Jost R., General theory of quantum fields, Springer-Verlag, Berlin, Heidelberg, New York, 1960.

    Google Scholar 

  5. Stritter R., Wightman A., Spin, statistics and all that, Springer-Verlag, Berlin, Heidelberg, New York, 1960.

    Google Scholar 

  6. Bogolyubov N. N., Vladimirov V. S., Representation of n-points functions, Trudy Math. Inst. Steklov 112 (1971), 5–21. (Russian)

    MATH  Google Scholar 

  7. Zavyalov B. I., Trushin V. B., On extended n-poins tube, Teoret. Mat. Fiz. 27 (1976), no. 1, 3–15. (Russian)

    MathSciNet  Google Scholar 

  8. Sergeev A. G., On matrix Reinhardt domains, preprint, Mittag-Leffler Inst., Stockholm, 1989.

    MATH  Google Scholar 

  9. Heinzner P., Invariantentheorie in der komplexen Analysis, preprint, Ruhr Univ., Bochum, 1990.

    Google Scholar 

  10. Heinzner P., Sergeev A., The extended future tube conjecture for the compact model, preprint, Ruhr Univ., Bochum, 1990.

    Google Scholar 

References

  1. Levitan B. M., Almost Periodic Functions, GITTL, Moscow, 1953. (Russian)

    MATH  Google Scholar 

  2. Ronkin L. I., Jessen’s theorems for holomorphic almost periodic functions in tube domains, Siberian Math. J. 28 (1987), no. 3, 199–204. (Russian)

    MathSciNet  MATH  Google Scholar 

  3. Jessen B., Tornehave H., Means motions and zeros of almost periodic functions, Acta Math. 77 (1945), 137–279.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ronkin L. I., On a class of holomorphic almost periodic functions of several variables (in preparation).

    Google Scholar 

References

  1. Znamenskij S. V., A geometric criterion for strong linear convexity, Functional Anal. Appl. 13 (1989), 83–84.

    MathSciNet  MATH  Google Scholar 

  2. Anderson M., Passare M., Complex kergin interpolation, Reports Department of Mathematics University of Stockholm (1989), no. 14, 1–11.

    Google Scholar 

  3. Martineau A., Sur la notion d’ensemble fortement linéelment convexe, Anaise. Acad. Brasil. Ciênc. 40 (1968), no. 4, 427–435.

    MathSciNet  MATH  Google Scholar 

  4. Znamenskij S. V., On the existence of holomorphic primitives in all directions, Mat. Zametki 45 (1989), 16–19. (Russian)

    MathSciNet  MATH  Google Scholar 

  5. Zelinskii Yu. B., On relations between properties of sets and properties of their sections and projections, Russian Math. Surveys 34 (1979), 261–266.

    Article  MathSciNet  Google Scholar 

  6. Znamenskij S. V., Strong linear convexity. 1. The duality in spaces of holomorphic functions, Sibirsk. Mat. Zh. 26 (1985), no. 3, 415–422. (Russian)

    MATH  Google Scholar 

  7. Trutnev V. M., On an analog of the Lauorent series for functions of several complex variables holomorphic on strongly linearly convex sets, In: Holomorphic functions of several complex variables, Krasnoyarsk, 1972, pp. 139–152. (Russian)

    Google Scholar 

  8. Aizenberg L. A., This collection, Problem 1. 18.

    Google Scholar 

  9. Zelinskii Yu. B., On the geometrical criteria of strong linear convexity, Complex analysis and applications. Proceedings of the International conference on complex analysis and applications. Varna, September 20–27, 1981. Sofia, 1984, p. 333.

    Google Scholar 

  10. Lempert L., Intrinsic distances and holomorphic retracts, Complex analysis and applications. Proceedings of the International conference on complex analysis and applications. Varna, September 20–27, 1981. Sofia, 1984, pp. 341–364.

    Google Scholar 

References

  1. Hedenmalm H., Outer functions of Several Complex Variables, J. Funct. Anal. 80 (1988), 9–15.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Alexander H., Polynomial approximation and hulls in sets of finite linear measure inn, Amer. J. Math. 93 (1971), 65–74.

    Article  MathSciNet  Google Scholar 

  2. Alexander H., Wermer J., On the approximation of singularity sets by analytic varieties, Pacific J. Math. 104 (1983), 263–268.

    Article  MathSciNet  MATH  Google Scholar 

  3. Belošapka V. K., On a metric property of analytic sets, Izv. Akad. Nauk SSSR 40 (1976), no. 6, 1409–1415 (Russian); English transl. in Math. USSR Izvestiya 10 (1976), 1333–1338.

    MathSciNet  Google Scholar 

  4. Golovin V. M., Polynomial convexity and sets of finite linear measure in CΛ Sibirsk. Matem. Zhurn. 20 (1979), no. 5, 990–996 (Russian); English transl. in Siberian Math. J. 20 (1979), no. 5, 700–704.

    MathSciNet  Google Scholar 

  5. Stolzenberg G., A hull with no analytic structure, J. of Math. and Mech. 12 (1963), 103–112.

    MathSciNet  MATH  Google Scholar 

  6. Vituškin A. G., On a problem of W. Rudin, Dokl. Akad. Nauk SSSR 213 (1973), 14–15 (Russian); English transl. in Soviet Math. Doklady 14 (1973), no. 6, 1618–1619.

    MathSciNet  Google Scholar 

  7. Wermer J., Polynomially convex hulls and analyticity, Arkiv för mat. 20 (1982), 129–135.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Alexander H., The polynomial hull of a set of finite linear measure inn J. d’Analyse Mathématique 47 (1986), 238–242.

    Article  MathSciNet  Google Scholar 

  2. Globevnik J., A disk in the ball whose end is an arc, preprint, 1990.

    Google Scholar 

References

  1. Forelli F., Measures whose Poisson integrals are pluriharmonic II, Illinois J. Math. 19 (1975), 584–592.

    MathSciNet  MATH  Google Scholar 

  2. Forelli F., Some extreme rays of the positive pluriharmonic functions, Canad. J. Math. 31 (1979), 9–16.

    Article  MathSciNet  MATH  Google Scholar 

  3. Forelli F., A necesary condition on the extreme points of a class of holomorphic functions, Pacific J. Math. 73 (1977), 81–86.

    Article  MathSciNet  MATH  Google Scholar 

  4. Ahern P., Rudin W., Factorizations of bounded holomorphic functions, Duke Math. J. 39 (1972), 767–777.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Atiyah M.F., Resolution of singularities and division of distributions, Commun. pure Appl. Math. 23 (1970), 145–150.

    Article  MathSciNet  MATH  Google Scholar 

  2. Barlet D., Maire H.M., Développements asymptotiques, Transformation de Mellin Complexe et intégration sur les fibres, Lect. Notes in Math. 1295 (1987).

    Google Scholar 

  3. Berenstein C. A., Gay R., Yger A., Analytic continuation of currents and division problems, Forum Math. 1 (1989), 15–51.

    Article  MathSciNet  MATH  Google Scholar 

  4. Berenstein C. A., Gay R., Vidras A., Yger A., Residue currents and Bezout identities, 1993, expository manuscript.

    Google Scholar 

  5. Berenstein C.A., Yger A., Une formule de Jacobi et ses conséquences, Ann. Sci. Ec. Norm. Sup. Paris 24 (1991), 363–377.

    MathSciNet  MATH  Google Scholar 

  6. Coleff N., Herrera M., Les courants résiduels associés à une forme méromorphe, Lect. Notes in Math. 633 (1978).

    Google Scholar 

  7. Dolbeault P., Theory of residues and homology, Lect. Notes in Math. 116 (1970).

    Google Scholar 

  8. Khovanskii A. G., Newton polyedra and toroidal varieties, Funct. Anal. Appl. 11 (1978), 289–295.

    Article  MATH  Google Scholar 

  9. Passare M., Residues, currents, and their relation to ideals of holomorphic functions, Math. Scand. 62 (1988), 75–152.

    MathSciNet  MATH  Google Scholar 

  10. Passare M., Courants méromorphes et égalité de la valeur principale et de la partie finie, Lect. Notes in Math. 1295 (1987), 157–166.

    Article  MathSciNet  MATH  Google Scholar 

  11. Passare M., A calculus for meromorphic currents, J. reine angew. Math. 392 (1988), 37–56.

    MathSciNet  MATH  Google Scholar 

  12. Sabbah C., Proximité évanescente I, II, Compositio Math. 62 (1987), 283–328; 64 (1988), 213–241.

    MathSciNet  MATH  Google Scholar 

  13. Tsikh A., Multidimensional Residues and Their Applications, Transl. Amer. Math. Soc. 103 (1992).

    Google Scholar 

  14. Varchenko A. N., Newton polyedra and estimation of oscillating integrals, Funct. Anal. Appl. 10 (1976), 175–196.

    Article  MATH  Google Scholar 

References

  1. Berenstein C. A., An inverse spectral theorem and its relation to the Pompeïu problem, J. Analyse Math. 37 (1980), 128–144.

    Article  MathSciNet  MATH  Google Scholar 

  2. Berenstein C. A. and Shahshahani M., Harmonic analysis and the Pompeïu problem, Amer. J. Math. 105 (1983), 1217–1229.

    Article  MathSciNet  MATH  Google Scholar 

  3. Berenstein C. A. and Yang P., An overdetermined Neumann problem in the unit disk, Advances in Mathematics 44 (1982), 1–17.

    Article  MathSciNet  MATH  Google Scholar 

  4. Berenstein C. A. and Yang, P., An inverse Neumann problem, J. Reine. Angew. Math. 382 (1987), 1–21.

    MathSciNet  MATH  Google Scholar 

  5. Berenstein C. A. and Zalcman L., Pompeïu’s problem on symmetric spaces, Comment. Math. Helvetici 55 (1980), 593–621.

    Article  MathSciNet  MATH  Google Scholar 

  6. Ebenfelt P., Some results on the Pompeïu problem, Ann. Acad. Sc. Fenn. (to appear).

    Google Scholar 

  7. Garofalo N. and Segala F., New results on the Pompeïu problem, Trans. Amer. Math. Soc. 325 (1991), 273–286.

    Article  MathSciNet  MATH  Google Scholar 

  8. Williams, S. A., A partial solution for the Pompeïu problem, Math. Ann. 223 (1976), 183–190.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Fischer E., Über die Differentiations prozesses der Algebra, J. Math. 148 (1917), 1–78.

    Google Scholar 

  2. Méril A., Struppa D. C., Equivalence of Cauchy problems for entire and exponential type functions, Bull. London Math. Soc. 17 (1985), 469–473.

    Article  MathSciNet  MATH  Google Scholar 

  3. Méril A., Yger A., Problémes de Cauchy globaux, Bull. Soc. Math. France 120 (1992), 87–111.

    MathSciNet  MATH  Google Scholar 

  4. Newman D. J., Shapiro H., Fischer spaces of entire functions, Proc. Sympos. Pure Math. 11 (1968), 360–369.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Bieberbach L., Beispiel zweier ganzer Funktionen zweier komplexer Variablem, welche eine schlichte volumtreue Abbildung des4 auf einen Teil seiner selbst vermitteln, S.B. Preuss Akad. Wiss. 14/15 (1933), 476–479.

    MATH  Google Scholar 

  2. Couty D., Formes réduites des automorphismes den à variété linéaire fixe et répulsive, Séminaire d’Algèbre de Paris 6, Lect. Notes in Math., vol. 1404, Springer-Verlag, Berlin, 1989, pp. 346–410.

    MATH  Google Scholar 

  3. Dixon P. G., Esterle J., Michael’s problem and the Poincaré-Fatou-Bieberbach phenomenon, Bull. Amer. Math. Soc. 15 (1986), 127–187.

    Article  MathSciNet  MATH  Google Scholar 

  4. Fatou P., Sur certaines fonctions uniformes de deux variables, C.R. Acad. Sci. Paris 175 (1922), 1030–1033.

    MATH  Google Scholar 

  5. Fornaess J. E., Sibony N., Complex Henon mappings in2 and Fatou-Bieberbach domains, Duke Math. J. 65 (1992), no. 2, 345–380.

    Article  MathSciNet  MATH  Google Scholar 

  6. Gruman L., L’image d’une application holomorphe, Ann. Fac. Sc. Toulouse 12 (1991), no. 1, 75–101.

    Article  MathSciNet  Google Scholar 

  7. Michael E. A., Locally multiplicatively-convex topological algebras, Mem AMS 11 (1952).

    Google Scholar 

  8. Nishimura Y., Applications holomorphes injectives de2 dans lui-même qui exceptent une droite complexe, J. Math. Kyoto-Univ. 24 (1984), no. 4, 755–761.

    MathSciNet  MATH  Google Scholar 

  9. Poincaré H., Sur une classe nouvelle de transcendantes uniformes, J. de Math. 6 (1890), 315–365.

    Google Scholar 

  10. Rosay J. P., Rudin W., Holomorphic maps fromn to ℂn, Trans. Amer. Math. Soc. 310 (1988), no. 1, 47–86.

    MathSciNet  MATH  Google Scholar 

  11. Sibony N., Pit-Mann-Wong, Some remarks on the Casorati-Weierstrass theorem, Ann. Polon. Math. 39 (1981), 165–174.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Victor P. Havin Nikolai K. Nikolski

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Aizenberg, L.A. (1994). ℂn . In: Havin, V.P., Nikolski, N.K. (eds) Linear and Complex Analysis Problem Book 3. Lecture Notes in Mathematics, vol 1574. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0101067

Download citation

  • DOI: https://doi.org/10.1007/BFb0101067

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57871-0

  • Online ISBN: 978-3-540-48368-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics