Advertisement

Interpolation, bases, multipliers

  • N. K. Nikolski
Chapter
  • 594 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1574)

Keywords

Entire Function Toeplitz Operator Interpolation Problem Blaschke Product Soviet Math 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Nikol'skii N., Treatise on the shift operator, Springer-Verlag, Heidelberg etc., 1986.CrossRefGoogle Scholar
  2. 2.
    Vinogradov S. A., Rukshin S. E., On free interpolation of germs of analytic functions in the Hardy spaces, Zapiski Nauchn. Semin. LOMI 107 (1981), 36–45 (Russian); English transl. in J. Soviet Math. 36 (1987), no. 3.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Vinogradov S. A., Havin V. P., The free interpolation in H and in some other function classes, Zapiski Nauchn. Semin. LOMI 47 (1974), 15–54; 56 (1976), 12–58 (Russian); English transl. in J. Soviet Math. 9 (1978) no. 2; 14 (1980), no. 2.MathSciNetGoogle Scholar
  4. 4.
    Garnett J., Bounded analytic functions, Academic Press, NY, 1981.zbMATHGoogle Scholar
  5. 5.
    Vinogradov S. A., Free interpolation in spaces of analytic functions, Leningrad State University (2 nd doctoral thesis), 1982.Google Scholar
  6. 6.
    Hruščëv S. V., Nikolski N. K., Pavlov B. S., Unconditional bases of exponentials and reproducing kernels, Lect. Notes Math. 864 (1981), 214–335.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Nikolski N., Hruščëv S., A functional model and some problems in the spectral function theory, Trudy Math. Inst. Steklov 176 (1987), 97–201 (Russian); English transl. in Proc. Steklov Inst. of Math. (1988), no. 3, 111–214, AMS series of publications.Google Scholar

References

  1. 1.
    Leont'ev A. F., On properties of sequences of linear aggregates that converge in a region in which the system of functions generating the linear aggregates is not complete, Uspekhi Matem. Nauk 11 (1956), no. 5, 26–37. (Russian)MathSciNetGoogle Scholar
  2. 2.
    Ehrenpreis L., Fourier Analysis in Several Complex Variables, Wiley-Interscience, New York, 1970.zbMATHGoogle Scholar
  3. 3.
    Palamodov V. P., Linear differential operators with constant coefficients, Nauka, Moscow, 1967. (Russian)zbMATHGoogle Scholar
  4. 4.
    Ehrenpreis L., Malliavin P., Invertible operators and interpolation in AU spaces, J. Math. Pure Appl. 13 (1974), 165–182.MathSciNetzbMATHGoogle Scholar
  5. 5.
    Borisevich A. I., Lapin G. P., On interpolation of entire functions, Sib. Mat. Zh. 9 (1968), no. 3, 522–529. (Russian)CrossRefGoogle Scholar

References

  1. 6.
    Berenstein C. A., Taylor B. A., A new look at interpolation theory for entire functions of one variable, Adv. Math. 33 (1979), no. 2, 109–143.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 7.
    Squires W. A., Necessary conditions for universal interpolation in \(\hat \varepsilon '\), Canad. J. Math. 33 (1981), no. 6, 1356–1364 (MR 83g: 30040).MathSciNetCrossRefzbMATHGoogle Scholar
  3. 8.
    Meise R., Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals, J. Reine Angew. Math. 363 (1985), 59–95.MathSciNetzbMATHGoogle Scholar
  4. 9.
    Braun R. W., Meise R., Generalized Fourier expansion for zero-solutions of surjective convolution operators on D {w}(ℝ)′, Arch. Math.Google Scholar
  5. 10.
    Napalkov V. V., Komarov A. V., On expansions of analytic functions in series of elementary solutions of aconvolution equation, Matem. Sbornik 181 (1990), no. 4, 556–563. (Russian)zbMATHGoogle Scholar

References

  1. 1.
    Leontiev A. F., Series of exponents, Nauka, Moscow, 1976. (Russian)Google Scholar
  2. 2.
    Leontiev A. F., On the problem of representation of analytic functions in an infinite convex domain by Dirichlet series, Doklady Akad. Nauk SSSR 225 (1975), no. 5, 1013–1015 (Russian); English transl. in Soviet Math.-Doklady.Google Scholar
  3. 3.
    Leontiev A. F., On a representation of an analytic function in an infinite convex domain, Anal. Math., 2 (1976), 125–148.MathSciNetCrossRefGoogle Scholar

References

  1. 1.
    Hruščëv S. V., Nikol’skii N. K., Pavlov B. S., Unconditional bases of exponentials and of reproduci kernels, Lect. Notes in Math. 864 (1981), 214–335.CrossRefGoogle Scholar
  2. 2.
    Vasyunin V. I., Unconditionally convergent spectral decompositions and interpolation problems, Trudy Matem. Inst. Steklova AN SSSR 130 (1978), 5–49 (Russian); English transl. in Proc. Steklov Inst. Math. 4 (1979), 1–53.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Nikol’skii N. K., Treatise on the Shift Operator, Springer-Verlag, 1986 (transl. from Russian).Google Scholar
  4. 4.
    Jones P. W., Ratios of interpolating Blaschke products, Pacific J. Math. 95 (1981), no. 2, 311–321.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Clark D. N., On interpolating sequences and the theory of Hankel and Toeplitz matrices, J. Funct. Anal. 5 (1970), no. 2, 247–258.MathSciNetCrossRefzbMATHGoogle Scholar

References

  1. 6.
    Dyakonov K. M., Interpolating functions of minimal norm, star-invariant subspaces, and kernels of Toeplitz operators, Proc. Amer. Math. Soc. (to appear).Google Scholar
  2. 7.
    Minkin A. M., Reflection of frequencies and unconditional bases of exponentials, Algebra i analiz 3 (1991), no. 5, 109–134 (Russian); English transl. in Petersburg Math. J. 3 (1992), no. 5.MathSciNetzbMATHGoogle Scholar

References

  1. 1.
    Muckenhoupt B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Gubreev G. M., Spectral analysis of biorthogonal expansions generated by Muckenhoupt weights, Zapiski Nauchn. Semin. LOMI 190 (1991), 34–80 (Russian); English transl. in J. Soviet Math.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Hruščëv S. V., Unconditional bases in L2 (0, a), Preprint Inst. D’Estudios Catalans, Barselona, 1985.Google Scholar
  4. 4.
    Hruščëv S. V., Unconditional bases in L2 (0, a), Proc. Amer. Math. Soc. 99 (1987), no. 4, 651–656.MathSciNetGoogle Scholar
  5. 5.
    Gubreev G. M., Generalized Dzhrbashyan transform and some of their applications, Izvestiya AN Arm. SSR, Matematika 21 (1986), no. 3, 306–310. (Russian)MathSciNetGoogle Scholar
  6. 6.
    Pavlov B. S., Bases of exponentials and the Muckenhoupt condition, Dokl. AN SSSR 247 (1979), no. 1, 37–40. (Russian)Google Scholar
  7. 7.
    Hruščëv S. V., Nikloski N. K., Pavlov B. S., Unconditional bases of exponentials and of reproducing kernels, Lecture Notes in Math. vol. 864, 1981.Google Scholar

References

  1. 1.
    Bruna J., Boundary interpolation sets for holomorphic functions smooth to the boundary and BMO, Trans. Amer. Math. Soc. 264 (1981), no. 2, 393–409.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Bruna J., Tugores F., Free interpolation for holomorphic functions regular up to the boundary, Pacific J. Math. 108 (1983), 31–49.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dyn’kin E. M., Free interpolation sets for Hölder classes, Mat. Sb. 109(151) (1979), no. 1, 107–128 (Russian); English transl. in Math. USSR Sbornik 37 (1980), 97–117.MathSciNetzbMATHGoogle Scholar
  4. 4.
    Jonsson A., Wallin H., The trace to closed sets of functions inn with second difference of order O(h), J. Approx. Theory 26 (1979), 159–184.MathSciNetCrossRefzbMATHGoogle Scholar

Reference

  1. 5.
    Boricheva I., Dyn’kin E., A non-classical free interpolation problem, Algebra i Analiz 4 (1992), no. 5, 45–90 (Russian); English transl. in St. Petersburg Math. J. 4 (1993), no. 5.MathSciNetzbMATHGoogle Scholar

Reference

  1. 1.
    Henkin G. M., G. Lewi equation and analysis on a pseudoconvex manifold, Mat. Sb. 102 (1977), no. 1, 71–108. (Russian)MathSciNetGoogle Scholar

References

  1. 1.
    Berndtsson B., Bruna J., Traces of pluriharmonic functions on curves, Ark. Mat. 28 (1990), no. 2, 221–230.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Forstnerič F., Regularity of varieties in strictly pseudoconvex domains, Publicacions Matemàtiques 32 (1988), 145–150.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Rosay J.-P., A remark on a theorem by B. Forstnerič, Ark. Mat. 28 (1990), 311–314.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Stout E. L., written communication.Google Scholar

References

  1. 1.
    Brudny Yu. A., Restrictions of the Lipschitz spaces to closed sets, Linear and Complex Analysis Problem Book, 199 Research Problems, Lect. Notes. Math., vol. 1043 Springer-Verlag, 1984, pp. 583–585.Google Scholar
  2. 2.
    Whitney H., Differentiable functions defined in closed sets, I, Amer. Math. Soc. Trans. 36 (1934), 369–387.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Jonsson A., The trace of the Zygmund class Λk(ℝ) to closed sets and interpolating polynomials, J. Approx. Theory 44 (1985), 1–13.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Shvartsman P. A., The traces of functions of two variables satisfying the Zygmund condition, Studies in the Theory of Functions of Several Real Variables, Yaroslavl State Univ., Yaroslavl, 1981, pp. 145–168. (Russian)zbMATHGoogle Scholar
  5. 5.
    Dzjadyk V. K., Shevchuk I. A., Continuation of functions which, on an arbitrary set of the line, are traces of functions with a given second modulus of continuity, Izv. Akad. Nauk SSSR 47 (1983), 248–267 (Russian); English transl. in Math. USSR Izvestia 39 (1983).MathSciNetGoogle Scholar
  6. 6.
    Shevchuk I. A., On traces of functions of class Hkϕ on the line, Dokl. Akad. Nauk SSSR 273 (1983), 313–314 (Russian); English transl. in Soviet Math.-Doklady 28 (1983), 652–653.MathSciNetGoogle Scholar
  7. 7.
    Shevchuk I. A., A constructive trace description of differentiable real variable functions, Inst. Matem. Ukr. SSR, Kiev, 1984, preprint. (Russian)Google Scholar
  8. 8.
    Whitney H., Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63–89.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Shvartsman P. A., Traces of functions of Zygmund class, Sibirsk. Mat. Zh. 28 (1987), 203–215 (Russian); English transl. in Siberian Math. J. 28 (1987), 853–863.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Brudny Yu. A., Shvartsman P. A., The traces of differentiable functions on closed subsets ofn, Proceedings of 2nd Int. Conf. on Func. Spaces, Poznan, Poland, 1991, Teubner. Zur. Mathem.Google Scholar
  11. 11.
    Brudny Yu. A., Shvartsman P. A., A linear extension operator for a space of smooth functions defined on a closed subset ofn, Dokl. Akad. Nauk SSSR 280 (1985), 268–272 (Russian); English transl. in Soviet Math. Dokl. 31 (1985), 48–51.MathSciNetGoogle Scholar
  12. 12.
    Brudny Yu. A., Shvartsman P. A., Extensions of functions with preservation of smoothness, Trudy Math. Inst. Steklov 180 (1987) (Russian); English transl. in Proc. Steklov Inst. Math. 3 (1989), 67–69.Google Scholar
  13. 13.
    Zobin N. M., Investigations on the theory of nuclear spaces, Ph. D. thesis, Voronezh State Univ., Voronezh, 1975. (Russian)Google Scholar
  14. 14.
    Konovalov V. N., A trace description for some classes of several real variables functions, Akad. Nauk Ukr. SSR, Inst. Matem, Kiev, 1984, preprint. (Russian)Google Scholar

References

  1. 1.
    Carleson L., An interpolation problem for bounded analytic functions, Amer. J. Math 80 (1958), no. 4, 921–930.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Vinogradov S. A., Multipliers of power series with sequence of coefficients from lp, Zapiski nauchn. sem. LOMI 39 (1974), 30–40 (Russian); English transl. in J. Soviet Math. 8 (1977), no. 1.Google Scholar
  3. 3.
    Vinogradov S. A., Exponential bases and free interpolation in Banach spaces with the Lp-norm, Zapiski nauchn. sem. LOMI 47 (1976), 17–68 (Russian); English transl. in J. Soviet Math. 16 (1981), no. 3, 1060–1065.zbMATHGoogle Scholar
  4. 4.
    Vinogradov S. A., Havin V. P., Free interpolation in H and some other classes of functions, Zapiski nauchn. sem. LOMI 47 (1974), 15–54 (Russian); English transl. in J. Soviet Math. 9 (1978), no. 2.MathSciNetGoogle Scholar
  5. 5.
    Earl J. P., On the interpolation of bounded sequences by bounded analytic functions, J. London Math. Soc. 2 (1970), no. 2, 544–548.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Vinogradov S. A., Havin V. P., Free interpolation in H and some other classes of functions, Zapiski nauchn. sem. LOMI 56 (1976), 12–58 (Russian); English transl. in J. Soviet Math. 14 (1980), no. 2, 1027–1065.MathSciNetGoogle Scholar
  7. 7.
    Gurarii V. P., The factorization of absolutely convergent Taylor series and Fourier integrals, Zapiski nauchn. sem. LOMI 30 (1972), 15–32 (Russian); English transl. in J. Soviet Math. 4 (1975), no. 4.MathSciNetGoogle Scholar
  8. 8.
    Shirokov N. A., Some properties of primary ideals of absolutely convergent Taylor series and Fourier integrals, Zapiski nauchn. sem. LOMI 39 (1974), 149–161 (Russian); English transl. in J. Soviet Math. 8 (1977), no. 1.MathSciNetGoogle Scholar

References

  1. 9.
    Vinogradov S. A., Multiplicative properties of power series with a sequence of coefficients from lp, Doklady Akad. Nauk SSSR 254 (1980), no. 6, 1301–1306 (Russian); English transl. in Soviet Math. Dokl. 22 (1980), no. 2, 560–565.Google Scholar
  2. 10.
    Verbitskii I. E., Multipliers of spaces lA p, Funktsional. Anal. i Prilozhen 14 (1980), no. 3, 67–68 (Russian); English transl. in Funct. Anal. Appl. 14 (1980), no. 3, 219–220.MathSciNetCrossRefGoogle Scholar

References

  1. 1.
    Rudin W., Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203–227.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Zafran M., Interpolation of multiplier spaces, Amer. J. Math. 105 (1983), 1405–1416.MathSciNetCrossRefzbMATHGoogle Scholar

References

  1. 1.
    Bochner S., A theorem on Fourier—Stieltjes integrals, Bull. Amer. Math. Soc., 40 (1934), no. 4, 271–276.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Krein M. G., On a problem of continuation of Hermitian-positive continuous functions, Doklady Akad. Nauk SSSR 26 (1940), no. 1, 17–21. (Russian)MathSciNetGoogle Scholar
  3. 3.
    Krein M. G., On representation of functions by Fourier-Stieltjes integrals, Učen. Zap. Kuibyš. GPI (1943), no. 7, 123–147. (Russian)Google Scholar
  4. 4.
    Krein, M. G., Measurable Hermitian-positive functions, Mat. Zametki 23 (1978), no. 1, 79–89 (Russian); English transl. in Math. Notes 23 (1978), no. 1, 45–50.MathSciNetzbMATHGoogle Scholar
  5. 5.
    Langer, H., On measurable Hermitian indefinite functions with a finite number of negative squares, Acta Sci. Math. Szeged 45 (1984), 281–292.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Artemenko, A. P., On positive linear functionals in the space of almost periodic functions of H. Bohr, Comm. Inst. Sci. Math. Mec. Univ. Kharkov (4) 16 (1940), 111–119. (Russian)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Artemenko A. P., Hermitian-positive functions and positive functionals. I, Teor. Funkts., Funktsion. Anal. i Prilozhen. (1984), no. 41, 3–16 (Russian)zbMATHGoogle Scholar
  8. 8.
    Levin B. Ya., On a generalization of the Fejer-Riesz theorem, Dokl. Akad. Nauk SSSR 52 (1946), 291–294. (Russian)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Crum M. M., On positive definite functions, Proc. London Math. Soc. 6 (1956), no. 3, 548–560.MathSciNetCrossRefzbMATHGoogle Scholar

References

  1. 1.
    De Branges L., Hilbert spaces of entire functions, Prentice Hall, 1968.Google Scholar
  2. 2.
    Ovcharenko I. E., On two parameters power moment sequences, Ukrain. Math. J. 36 (1984), no. 1, 51–56. (Russian)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Kowalski M. A., Representation of inner products on space of polynomials, Acta Math. Hung. 46 (1985), no. 1-2, 101–109.CrossRefzbMATHGoogle Scholar
  4. 4.
    Gautschi W., Orthogonal polynomials—Constructive theory and applications, J. of Comput. Appl. Math. 12–13 (1985), 61–66.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Ovcharenko I. E., Scalar products on space of polynomials and positivity, Dokl. Akad. Nauk Ukr. SSR, ser. A 7 (1990), 17–21. (Russian)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Ovcharenko I. E., Some applications of the Chebyshev’s recursion, Dokl. Akad. Nauk SSSR 319 (1991), no. 1, 12–15. (Russian)Google Scholar

References

  1. 1.
    Calderón A., Pepinsky R., On the phases of Fourier coefficients for positive real functions, Computing methods and the phase problem in x-ray crystal analysis, Report of a conference held at the Pennsylvania State College, April 6–8, 1950 (R. Pepinsky, ed.), State College, Pa., 1952, pp. 339–348.Google Scholar
  2. 2.
    Rudin W., The extension problem for positive definite functions, Illinois J. Math. 3 (1963), 532–539.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Sakhnovich, L. A., Effective construction of nonextendable Hermitian-positive functions of several variables, Funkts. Anal. Prilozh. 14 (1980), no. 4, 55–60 (Russian); English transl. in Funct. Anal. Appl. 14 (1980), 290–294.MathSciNetGoogle Scholar
  4. 4.
    Hilbert D., Über die Darstellung definiter Formen als Summe von Formquadraten, Math. Ann. 32 (1888), 342–350.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • N. K. Nikolski
    • 1
    • 2
  1. 1.UFR MathématiquesUniversité Bordeaux-ITalence CEDEXFrance
  2. 2.St. Petersburg BranchSteklov Mathematical InstituteSt. PetersburgRussia

Personalised recommendations