Skip to main content

Interpolation, bases, multipliers

  • Chapter
  • First Online:
Linear and Complex Analysis Problem Book 3

Part of the book series: Lecture Notes in Mathematics ((LNM,volume 1574))

  • 917 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Nikol'skii N., Treatise on the shift operator, Springer-Verlag, Heidelberg etc., 1986.

    Book  Google Scholar 

  2. Vinogradov S. A., Rukshin S. E., On free interpolation of germs of analytic functions in the Hardy spaces, Zapiski Nauchn. Semin. LOMI 107 (1981), 36–45 (Russian); English transl. in J. Soviet Math. 36 (1987), no. 3.

    MathSciNet  MATH  Google Scholar 

  3. Vinogradov S. A., Havin V. P., The free interpolation in H and in some other function classes, Zapiski Nauchn. Semin. LOMI 47 (1974), 15–54; 56 (1976), 12–58 (Russian); English transl. in J. Soviet Math. 9 (1978) no. 2; 14 (1980), no. 2.

    MathSciNet  Google Scholar 

  4. Garnett J., Bounded analytic functions, Academic Press, NY, 1981.

    MATH  Google Scholar 

  5. Vinogradov S. A., Free interpolation in spaces of analytic functions, Leningrad State University (2 nd doctoral thesis), 1982.

    Google Scholar 

  6. Hruščëv S. V., Nikolski N. K., Pavlov B. S., Unconditional bases of exponentials and reproducing kernels, Lect. Notes Math. 864 (1981), 214–335.

    Article  MathSciNet  Google Scholar 

  7. Nikolski N., Hruščëv S., A functional model and some problems in the spectral function theory, Trudy Math. Inst. Steklov 176 (1987), 97–201 (Russian); English transl. in Proc. Steklov Inst. of Math. (1988), no. 3, 111–214, AMS series of publications.

    Google Scholar 

References

  1. Leont'ev A. F., On properties of sequences of linear aggregates that converge in a region in which the system of functions generating the linear aggregates is not complete, Uspekhi Matem. Nauk 11 (1956), no. 5, 26–37. (Russian)

    MathSciNet  Google Scholar 

  2. Ehrenpreis L., Fourier Analysis in Several Complex Variables, Wiley-Interscience, New York, 1970.

    MATH  Google Scholar 

  3. Palamodov V. P., Linear differential operators with constant coefficients, Nauka, Moscow, 1967. (Russian)

    MATH  Google Scholar 

  4. Ehrenpreis L., Malliavin P., Invertible operators and interpolation in AU spaces, J. Math. Pure Appl. 13 (1974), 165–182.

    MathSciNet  MATH  Google Scholar 

  5. Borisevich A. I., Lapin G. P., On interpolation of entire functions, Sib. Mat. Zh. 9 (1968), no. 3, 522–529. (Russian)

    Article  Google Scholar 

References

  1. Berenstein C. A., Taylor B. A., A new look at interpolation theory for entire functions of one variable, Adv. Math. 33 (1979), no. 2, 109–143.

    Article  MathSciNet  MATH  Google Scholar 

  2. Squires W. A., Necessary conditions for universal interpolation in \(\hat \varepsilon '\), Canad. J. Math. 33 (1981), no. 6, 1356–1364 (MR 83g: 30040).

    Article  MathSciNet  MATH  Google Scholar 

  3. Meise R., Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals, J. Reine Angew. Math. 363 (1985), 59–95.

    MathSciNet  MATH  Google Scholar 

  4. Braun R. W., Meise R., Generalized Fourier expansion for zero-solutions of surjective convolution operators on D {w}(ℝ)′, Arch. Math.

    Google Scholar 

  5. Napalkov V. V., Komarov A. V., On expansions of analytic functions in series of elementary solutions of aconvolution equation, Matem. Sbornik 181 (1990), no. 4, 556–563. (Russian)

    MATH  Google Scholar 

References

  1. Leontiev A. F., Series of exponents, Nauka, Moscow, 1976. (Russian)

    Google Scholar 

  2. Leontiev A. F., On the problem of representation of analytic functions in an infinite convex domain by Dirichlet series, Doklady Akad. Nauk SSSR 225 (1975), no. 5, 1013–1015 (Russian); English transl. in Soviet Math.-Doklady.

    Google Scholar 

  3. Leontiev A. F., On a representation of an analytic function in an infinite convex domain, Anal. Math., 2 (1976), 125–148.

    Article  MathSciNet  Google Scholar 

References

  1. Hruščëv S. V., Nikol’skii N. K., Pavlov B. S., Unconditional bases of exponentials and of reproduci kernels, Lect. Notes in Math. 864 (1981), 214–335.

    Article  Google Scholar 

  2. Vasyunin V. I., Unconditionally convergent spectral decompositions and interpolation problems, Trudy Matem. Inst. Steklova AN SSSR 130 (1978), 5–49 (Russian); English transl. in Proc. Steklov Inst. Math. 4 (1979), 1–53.

    MathSciNet  MATH  Google Scholar 

  3. Nikol’skii N. K., Treatise on the Shift Operator, Springer-Verlag, 1986 (transl. from Russian).

    Google Scholar 

  4. Jones P. W., Ratios of interpolating Blaschke products, Pacific J. Math. 95 (1981), no. 2, 311–321.

    Article  MathSciNet  MATH  Google Scholar 

  5. Clark D. N., On interpolating sequences and the theory of Hankel and Toeplitz matrices, J. Funct. Anal. 5 (1970), no. 2, 247–258.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Dyakonov K. M., Interpolating functions of minimal norm, star-invariant subspaces, and kernels of Toeplitz operators, Proc. Amer. Math. Soc. (to appear).

    Google Scholar 

  2. Minkin A. M., Reflection of frequencies and unconditional bases of exponentials, Algebra i analiz 3 (1991), no. 5, 109–134 (Russian); English transl. in Petersburg Math. J. 3 (1992), no. 5.

    MathSciNet  MATH  Google Scholar 

References

  1. Muckenhoupt B., Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165 (1972), 207–226.

    Article  MathSciNet  MATH  Google Scholar 

  2. Gubreev G. M., Spectral analysis of biorthogonal expansions generated by Muckenhoupt weights, Zapiski Nauchn. Semin. LOMI 190 (1991), 34–80 (Russian); English transl. in J. Soviet Math.

    MathSciNet  MATH  Google Scholar 

  3. Hruščëv S. V., Unconditional bases in L2 (0, a), Preprint Inst. D’Estudios Catalans, Barselona, 1985.

    Google Scholar 

  4. Hruščëv S. V., Unconditional bases in L2 (0, a), Proc. Amer. Math. Soc. 99 (1987), no. 4, 651–656.

    MathSciNet  Google Scholar 

  5. Gubreev G. M., Generalized Dzhrbashyan transform and some of their applications, Izvestiya AN Arm. SSR, Matematika 21 (1986), no. 3, 306–310. (Russian)

    MathSciNet  Google Scholar 

  6. Pavlov B. S., Bases of exponentials and the Muckenhoupt condition, Dokl. AN SSSR 247 (1979), no. 1, 37–40. (Russian)

    Google Scholar 

  7. Hruščëv S. V., Nikloski N. K., Pavlov B. S., Unconditional bases of exponentials and of reproducing kernels, Lecture Notes in Math. vol. 864, 1981.

    Google Scholar 

References

  1. Bruna J., Boundary interpolation sets for holomorphic functions smooth to the boundary and BMO, Trans. Amer. Math. Soc. 264 (1981), no. 2, 393–409.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bruna J., Tugores F., Free interpolation for holomorphic functions regular up to the boundary, Pacific J. Math. 108 (1983), 31–49.

    Article  MathSciNet  MATH  Google Scholar 

  3. Dyn’kin E. M., Free interpolation sets for Hölder classes, Mat. Sb. 109(151) (1979), no. 1, 107–128 (Russian); English transl. in Math. USSR Sbornik 37 (1980), 97–117.

    MathSciNet  MATH  Google Scholar 

  4. Jonsson A., Wallin H., The trace to closed sets of functions inn with second difference of order O(h), J. Approx. Theory 26 (1979), 159–184.

    Article  MathSciNet  MATH  Google Scholar 

Reference

  1. Boricheva I., Dyn’kin E., A non-classical free interpolation problem, Algebra i Analiz 4 (1992), no. 5, 45–90 (Russian); English transl. in St. Petersburg Math. J. 4 (1993), no. 5.

    MathSciNet  MATH  Google Scholar 

Reference

  1. Henkin G. M., G. Lewi equation and analysis on a pseudoconvex manifold, Mat. Sb. 102 (1977), no. 1, 71–108. (Russian)

    MathSciNet  Google Scholar 

References

  1. Berndtsson B., Bruna J., Traces of pluriharmonic functions on curves, Ark. Mat. 28 (1990), no. 2, 221–230.

    Article  MathSciNet  MATH  Google Scholar 

  2. Forstnerič F., Regularity of varieties in strictly pseudoconvex domains, Publicacions Matemàtiques 32 (1988), 145–150.

    Article  MathSciNet  MATH  Google Scholar 

  3. Rosay J.-P., A remark on a theorem by B. Forstnerič, Ark. Mat. 28 (1990), 311–314.

    Article  MathSciNet  MATH  Google Scholar 

  4. Stout E. L., written communication.

    Google Scholar 

References

  1. Brudny Yu. A., Restrictions of the Lipschitz spaces to closed sets, Linear and Complex Analysis Problem Book, 199 Research Problems, Lect. Notes. Math., vol. 1043 Springer-Verlag, 1984, pp. 583–585.

    Google Scholar 

  2. Whitney H., Differentiable functions defined in closed sets, I, Amer. Math. Soc. Trans. 36 (1934), 369–387.

    Article  MathSciNet  MATH  Google Scholar 

  3. Jonsson A., The trace of the Zygmund class Λk(ℝ) to closed sets and interpolating polynomials, J. Approx. Theory 44 (1985), 1–13.

    Article  MathSciNet  MATH  Google Scholar 

  4. Shvartsman P. A., The traces of functions of two variables satisfying the Zygmund condition, Studies in the Theory of Functions of Several Real Variables, Yaroslavl State Univ., Yaroslavl, 1981, pp. 145–168. (Russian)

    MATH  Google Scholar 

  5. Dzjadyk V. K., Shevchuk I. A., Continuation of functions which, on an arbitrary set of the line, are traces of functions with a given second modulus of continuity, Izv. Akad. Nauk SSSR 47 (1983), 248–267 (Russian); English transl. in Math. USSR Izvestia 39 (1983).

    MathSciNet  Google Scholar 

  6. Shevchuk I. A., On traces of functions of class H ϕk on the line, Dokl. Akad. Nauk SSSR 273 (1983), 313–314 (Russian); English transl. in Soviet Math.-Doklady 28 (1983), 652–653.

    MathSciNet  Google Scholar 

  7. Shevchuk I. A., A constructive trace description of differentiable real variable functions, Inst. Matem. Ukr. SSR, Kiev, 1984, preprint. (Russian)

    Google Scholar 

  8. Whitney H., Analytic extensions of differentiable functions defined in closed sets, Trans. Amer. Math. Soc. 36 (1934), 63–89.

    Article  MathSciNet  MATH  Google Scholar 

  9. Shvartsman P. A., Traces of functions of Zygmund class, Sibirsk. Mat. Zh. 28 (1987), 203–215 (Russian); English transl. in Siberian Math. J. 28 (1987), 853–863.

    Article  MathSciNet  MATH  Google Scholar 

  10. Brudny Yu. A., Shvartsman P. A., The traces of differentiable functions on closed subsets ofn, Proceedings of 2nd Int. Conf. on Func. Spaces, Poznan, Poland, 1991, Teubner. Zur. Mathem.

    Google Scholar 

  11. Brudny Yu. A., Shvartsman P. A., A linear extension operator for a space of smooth functions defined on a closed subset ofn, Dokl. Akad. Nauk SSSR 280 (1985), 268–272 (Russian); English transl. in Soviet Math. Dokl. 31 (1985), 48–51.

    MathSciNet  Google Scholar 

  12. Brudny Yu. A., Shvartsman P. A., Extensions of functions with preservation of smoothness, Trudy Math. Inst. Steklov 180 (1987) (Russian); English transl. in Proc. Steklov Inst. Math. 3 (1989), 67–69.

    Google Scholar 

  13. Zobin N. M., Investigations on the theory of nuclear spaces, Ph. D. thesis, Voronezh State Univ., Voronezh, 1975. (Russian)

    Google Scholar 

  14. Konovalov V. N., A trace description for some classes of several real variables functions, Akad. Nauk Ukr. SSR, Inst. Matem, Kiev, 1984, preprint. (Russian)

    Google Scholar 

References

  1. Carleson L., An interpolation problem for bounded analytic functions, Amer. J. Math 80 (1958), no. 4, 921–930.

    Article  MathSciNet  MATH  Google Scholar 

  2. Vinogradov S. A., Multipliers of power series with sequence of coefficients from lp, Zapiski nauchn. sem. LOMI 39 (1974), 30–40 (Russian); English transl. in J. Soviet Math. 8 (1977), no. 1.

    Google Scholar 

  3. Vinogradov S. A., Exponential bases and free interpolation in Banach spaces with the Lp-norm, Zapiski nauchn. sem. LOMI 47 (1976), 17–68 (Russian); English transl. in J. Soviet Math. 16 (1981), no. 3, 1060–1065.

    MATH  Google Scholar 

  4. Vinogradov S. A., Havin V. P., Free interpolation in H and some other classes of functions, Zapiski nauchn. sem. LOMI 47 (1974), 15–54 (Russian); English transl. in J. Soviet Math. 9 (1978), no. 2.

    MathSciNet  Google Scholar 

  5. Earl J. P., On the interpolation of bounded sequences by bounded analytic functions, J. London Math. Soc. 2 (1970), no. 2, 544–548.

    MathSciNet  MATH  Google Scholar 

  6. Vinogradov S. A., Havin V. P., Free interpolation in H and some other classes of functions, Zapiski nauchn. sem. LOMI 56 (1976), 12–58 (Russian); English transl. in J. Soviet Math. 14 (1980), no. 2, 1027–1065.

    MathSciNet  Google Scholar 

  7. Gurarii V. P., The factorization of absolutely convergent Taylor series and Fourier integrals, Zapiski nauchn. sem. LOMI 30 (1972), 15–32 (Russian); English transl. in J. Soviet Math. 4 (1975), no. 4.

    MathSciNet  Google Scholar 

  8. Shirokov N. A., Some properties of primary ideals of absolutely convergent Taylor series and Fourier integrals, Zapiski nauchn. sem. LOMI 39 (1974), 149–161 (Russian); English transl. in J. Soviet Math. 8 (1977), no. 1.

    MathSciNet  Google Scholar 

References

  1. Vinogradov S. A., Multiplicative properties of power series with a sequence of coefficients from lp, Doklady Akad. Nauk SSSR 254 (1980), no. 6, 1301–1306 (Russian); English transl. in Soviet Math. Dokl. 22 (1980), no. 2, 560–565.

    Google Scholar 

  2. Verbitskii I. E., Multipliers of spaces lA p, Funktsional. Anal. i Prilozhen 14 (1980), no. 3, 67–68 (Russian); English transl. in Funct. Anal. Appl. 14 (1980), no. 3, 219–220.

    Article  MathSciNet  Google Scholar 

References

  1. Rudin W., Trigonometric series with gaps, J. Math. Mech. 9 (1960), 203–227.

    MathSciNet  MATH  Google Scholar 

  2. Zafran M., Interpolation of multiplier spaces, Amer. J. Math. 105 (1983), 1405–1416.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. Bochner S., A theorem on Fourier—Stieltjes integrals, Bull. Amer. Math. Soc., 40 (1934), no. 4, 271–276.

    Article  MathSciNet  MATH  Google Scholar 

  2. Krein M. G., On a problem of continuation of Hermitian-positive continuous functions, Doklady Akad. Nauk SSSR 26 (1940), no. 1, 17–21. (Russian)

    MathSciNet  Google Scholar 

  3. Krein M. G., On representation of functions by Fourier-Stieltjes integrals, Učen. Zap. Kuibyš. GPI (1943), no. 7, 123–147. (Russian)

    Google Scholar 

  4. Krein, M. G., Measurable Hermitian-positive functions, Mat. Zametki 23 (1978), no. 1, 79–89 (Russian); English transl. in Math. Notes 23 (1978), no. 1, 45–50.

    MathSciNet  MATH  Google Scholar 

  5. Langer, H., On measurable Hermitian indefinite functions with a finite number of negative squares, Acta Sci. Math. Szeged 45 (1984), 281–292.

    MathSciNet  MATH  Google Scholar 

  6. Artemenko, A. P., On positive linear functionals in the space of almost periodic functions of H. Bohr, Comm. Inst. Sci. Math. Mec. Univ. Kharkov (4) 16 (1940), 111–119. (Russian)

    MathSciNet  MATH  Google Scholar 

  7. Artemenko A. P., Hermitian-positive functions and positive functionals. I, Teor. Funkts., Funktsion. Anal. i Prilozhen. (1984), no. 41, 3–16 (Russian)

    MATH  Google Scholar 

  8. Levin B. Ya., On a generalization of the Fejer-Riesz theorem, Dokl. Akad. Nauk SSSR 52 (1946), 291–294. (Russian)

    MathSciNet  MATH  Google Scholar 

  9. Crum M. M., On positive definite functions, Proc. London Math. Soc. 6 (1956), no. 3, 548–560.

    Article  MathSciNet  MATH  Google Scholar 

References

  1. De Branges L., Hilbert spaces of entire functions, Prentice Hall, 1968.

    Google Scholar 

  2. Ovcharenko I. E., On two parameters power moment sequences, Ukrain. Math. J. 36 (1984), no. 1, 51–56. (Russian)

    Article  MathSciNet  MATH  Google Scholar 

  3. Kowalski M. A., Representation of inner products on space of polynomials, Acta Math. Hung. 46 (1985), no. 1-2, 101–109.

    Article  MATH  Google Scholar 

  4. Gautschi W., Orthogonal polynomials—Constructive theory and applications, J. of Comput. Appl. Math. 12–13 (1985), 61–66.

    Article  MathSciNet  MATH  Google Scholar 

  5. Ovcharenko I. E., Scalar products on space of polynomials and positivity, Dokl. Akad. Nauk Ukr. SSR, ser. A 7 (1990), 17–21. (Russian)

    MathSciNet  MATH  Google Scholar 

  6. Ovcharenko I. E., Some applications of the Chebyshev’s recursion, Dokl. Akad. Nauk SSSR 319 (1991), no. 1, 12–15. (Russian)

    Google Scholar 

References

  1. Calderón A., Pepinsky R., On the phases of Fourier coefficients for positive real functions, Computing methods and the phase problem in x-ray crystal analysis, Report of a conference held at the Pennsylvania State College, April 6–8, 1950 (R. Pepinsky, ed.), State College, Pa., 1952, pp. 339–348.

    Google Scholar 

  2. Rudin W., The extension problem for positive definite functions, Illinois J. Math. 3 (1963), 532–539.

    MathSciNet  MATH  Google Scholar 

  3. Sakhnovich, L. A., Effective construction of nonextendable Hermitian-positive functions of several variables, Funkts. Anal. Prilozh. 14 (1980), no. 4, 55–60 (Russian); English transl. in Funct. Anal. Appl. 14 (1980), 290–294.

    MathSciNet  Google Scholar 

  4. Hilbert D., Über die Darstellung definiter Formen als Summe von Formquadraten, Math. Ann. 32 (1888), 342–350.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Victor P. Havin Nikolai K. Nikolski

Rights and permissions

Reprints and permissions

Copyright information

© 1994 Springer-Verlag

About this chapter

Cite this chapter

Nikolski, N.K. (1994). Interpolation, bases, multipliers. In: Havin, V.P., Nikolski, N.K. (eds) Linear and Complex Analysis Problem Book 3. Lecture Notes in Mathematics, vol 1574. Springer, Berlin, Heidelberg. https://doi.org/10.1007/BFb0101065

Download citation

  • DOI: https://doi.org/10.1007/BFb0101065

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-57871-0

  • Online ISBN: 978-3-540-48368-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics