Advertisement

Spectral analysis and synthesis

  • N. K. Nikolski
Chapter
  • 597 Downloads
Part of the Lecture Notes in Mathematics book series (LNM, volume 1574)

Keywords

Entire Function Prime Ideal Invariant Subspace Banach Algebra Convex Domain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Waelbroeck L., Étude spectrale des algèbres complètes, Acad. Royale Belg. Mém. Cl. Sci. 2 (1960), 31.zbMATHGoogle Scholar
  2. 2.
    Hörmander L., L 2-estimates and existence theorems for the H , Acta Math. 113 (1965), 85–152.CrossRefGoogle Scholar
  3. 3.
    Hörmander L., An Introduction to Complex Analysis in Several Variables, Van Nostrand, New York, 1966.zbMATHGoogle Scholar
  4. 4.
    Hörmander L., Generators for some rings of analytic functions, Bull. Amer. Math. Soc. 73 (1967), 943–949.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Cnop I., Spectral study of holomorphic functions with bounded growth, Ann. Inst. Fourier 22 (1972), 293–309.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Ferrier J.-P., Approximation des fonctions holomorphes de plusiers variables avec croissance, Ann. Inst. Fourier 22 (1972), 67–87.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Ferrier J.-P., Spectral Theory and Complex Analysis, North Holland Math. Stud., vol. 4, North Holland, Amsterdam, 1973.zbMATHGoogle Scholar

References

  1. 1.
    Malgrange B., Sur les systèmes differentiel à coefficients constants, Coll. Int. CNRS, Paris, 1963.Google Scholar
  2. 2.
    Palamodov V. P., Linear differential operators with constant coefficients, “Nauka”, Moscow, 1967. (Russian)zbMATHGoogle Scholar
  3. 3.
    Palamodov V. P., A complex of holomorphic waves, Trudy Sem. Petrovsk. (1975) no. 1, 177–210. (Russian)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Dufresnoy A., Un résultat de d″-cohomologie; applications aux systèmes differentiel à coefficients constants, Ann. Inst. Fourier 27 (1977), no. 2, 125–143.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Hörmander L., Linear Partial Differential Operators, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963.zbMATHCrossRefGoogle Scholar

References

  1. 1.
    Schwartz L., Théorie générale des fonctions moyenne-périodiques, Ann. Math. 48 (1947), no. 4, 857–925.zbMATHCrossRefGoogle Scholar
  2. 2.
    Krasichkov-Ternovskii I. F., Invariant subspaces of analytic functions. I. Spectral synthesis on convex domains, Mat. Sb. 87 (1972), no. 4, 459–487 (Russian); English transl. in Math. USSR Sb. 16 (1972), 471–500; II., Mat. Sb. 88 (1972), no. 1, 3–30 (Russian); English transl. in Math. USSR Sb. 17 (1972), no. 1, 1–29.MathSciNetGoogle Scholar
  3. 3.
    Malgrange, B., Existence at approximation des solution des équations aux derivées partielles et des équations de convolution, Ann. Inst. Fourier 6 (1955), 271–354.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Ehrenpreis L., Mean periodic functions, Amer. J. Math. 77 (1955), no. 2, 293–328.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Napalkov V. V., On subspaces of analytic functions invariant relative to a shift, Izv. Akad. Nauk SSSR, ser. matem. 36 (1972), 1269–1281 (Russian); English transl. in Math. USSR Izvestija 6 (1972), no. 6, 1251–1264.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Napalkov V. V., On equation of convolution type in tube domains of2, Izv. Akad. Nauk SSSR, ser. matem. 38 (1974), 446–456 (Russian); English transl. in Math. USSR Izvestija 8 (1974), no. 2, 452–464.MathSciNetGoogle Scholar
  7. 7.
    Trutnev V. M., On convolution equations in convex domains ofn, Topics in mathematics, (Voprosy matematiki), vol. 510, Tashkent State University, 1976, pp. 148–150. (Russian)Google Scholar
  8. 8.
    Martineau A., Sur la notion d’ensemble fortement linéellement convexe, Ann. Acad. Brasil., Ciens. 40 (1968), no. 4, 427–435.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Pinčuk S. I., On the existence of holomorphic primitives, Dokl. Akad. Nauk SSSR 204 (1972), no. 2, 292–294 (Russian); English transl. in Soviet Math. Doklady 13 (1972), no. 3, 654–657.MathSciNetzbMATHGoogle Scholar

References

  1. 10.
    Gurevič D. I., Counterexample to a problem of L. Schwartz, Functs. Anal. Prilozhen. 9 (1975), no. 2, 29–35 (Russian); English transl. in Funct. Anal. Appl. 9 (1975), no. 2, 116–120.Google Scholar
  2. 11.
    Momm S., Convex univalent functions and continuous linear inverses, Preprint 20pp., 1992, Univ. of Düsseldorf (Germany).Google Scholar

References

  1. 1.
    Nikol’skii N. K., Selected problems of weighted approximation and spectral analysis, Trudy Mat. Inst. Steklov 120 (1974) (Russian); English transl. in Proc. Steklov Inst. Math. 120 (1974).Google Scholar
  2. 2.
    Krasichkov-Ternovskii I. F., A homogeneous equation of convolution type on convex domains. Dokl. Acad. Nauk SSSR 197 (1971), 29–31 (Russian); English transl. in Soviet Math. Dokl. 12 (1971), no. 1, 396–398.Google Scholar
  3. 3.
    Schwartz L., Théorie générale des fonctions moyenne-périodiques, Ann. Math. 48 (1947), no. 4, 857–929.zbMATHCrossRefGoogle Scholar
  4. 4.
    Krasichkov-Ternovskii I. F., Invariant subspaces of analytic functions. I. Spectral synthesis on convex domains, Mat. Sb. 87 (1972), no. 4, 459–488 (Russian); English transl. in Math. USSR Sb. 16 (1972), 471–500.MathSciNetGoogle Scholar
  5. 5.
    Krasichkov-Ternovskii I. F., Invariant subspaces of analytic functions. II. Spectral synthesis on convex domains, Mat. Sb. 88 (1972), no. 1, 3–30 (Russian); English transl. in Math. USSR Sb. 17 (1972), no. 1, 1–29.MathSciNetGoogle Scholar
  6. 6.
    Cartan H., Idéaux et modules de fonctions analytiques de variables complexes, Bull. Soc. Math. France 78 (1950), no. 1, 29–64.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Kelleher J. J., Taylor B. A., Closed ideals in locally convex algebras of analytic functions, J. reine und angew. Math. 225 (1972), 190–209.MathSciNetzbMATHGoogle Scholar
  8. 8.
    Krasichkov-Ternovskii I. F., An estimate for subharmonic difference of subharmonic functions I, Mat. Sb. 102 (1977), no. 2, 216–247 (Russian); English transl. in Math. USSR. Sb. 31 (1977).MathSciNetGoogle Scholar
  9. 9.
    Krasichkov-Ternovskii I. F., An estimate for subharmonic difference of subharmonic functions II, Mat. Sb. 103 (1977), no. 1, 69–111 (Russian); English transl. in Math. USSR Sb. 32 (1977).MathSciNetGoogle Scholar
  10. 10.
    Raševskii P. K., Closed ideals in a countably-normed algebra of entire analytic functions, Dokl. Akad. Nauk SSSR 162 (1965), 513–515 (Russian); English transl. in Soviet Math. Dokl. 6 (1965), 717.MathSciNetGoogle Scholar
  11. 11.
    Krasičkov I. F., Closed ideals in locallyconvex algebras of entire functions. I, II, Izv. Akad. Nauk SSSR, ser. matem. 31 (1967), 37–60 (Russian); English transl. in Math. USSR Izvestija. 31 (1967), 35–55; Izv. Akad. Nauk SSSR, ser. matem. 32 (1968), 1024–1032 (Russian); English transl. in Math. USSR Izvestija 32 (1968), 979–986.Google Scholar
  12. 12.
    Matsaev V. I., Mogul’skii E. Z., Completeness of weak perturbations of self-adjoint operators, Zap. Nauchn. Sem. LOMI 56 (1976), 90–103 (Russian); English transl. in J. Soviet Math. 14 (1980), no. 2, 1093–1103.Google Scholar
  13. 13.
    Krasichkov-Ternovskii I. F., Local description of closed ideals and submodules of analytic functions of one complex variable. I and II, Izvestiya AN SSSR, ser. matem. 43 (1979), no. 1, 44–66; and 43 (1979), no. 2, 309–341. (Russian)MathSciNetGoogle Scholar

References

  1. 1.
    Nikol’skii N. K., Invariant subspaces in operator theory and function theory, Itogi Nauki i Tekhniki: Mat. Anal. 12 (1974), 199–412, VINITI, Moscow (Russian); English transl. in J. Soviet Math. 5 (1976), no. 2.Google Scholar
  2. 2.
    Schwartz L., Théorie générale des fonctions moyenne-périodiques, Ann. Math. 48 (1947), no. 4, 857–929.zbMATHCrossRefGoogle Scholar
  3. 3.
    Krasichkov-Ternovskii I. F., Invariant subspaces of analytic functions. I. Spectral synthesis on convex domains, Mat. Sb. 87 (1972), no. 4, 459–487 (Russian); English transl. in Math. USSR Sb. 16 (1972), 471–500; II., Mat. Sb. 88 (1972), no. 1, 3–30 (Russian); English transl. in Math. USSR Sb. 17 (1972), no. 1, 1–29.MathSciNetGoogle Scholar
  4. 4.
    Tkachenko V. A., On spectral synthesis in spaces of analytic functionals, Dokl. Akad. Nauk SSSR 223 (1975), no. 2, 307–309 (Russian); English transl. in Soviet Math. Doklady 16 (1975), no. 4, 895–898.MathSciNetzbMATHGoogle Scholar

References

  1. 1.
    Ehrenpreis L., Mean periodic functions. I. Varieties whose annihilator ideals are principal, Amer. J. Math. XX (1955), 293–328.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Krasichkov-Ternovskiî I. F., Shishkin A. B., Spectral synthesis for a multiple differentiation operator, Soviet Math. Dokl. 40 (1990), no. 1, 16–19.MathSciNetzbMATHGoogle Scholar
  3. 3.
    Krasichkov-Ternovskiî I. F., Invariant subspaces of analytic functions. I. Spectral synthesis on convex domains, Mat. Sb. 87 (1972), no. 4, 459–487 (Russian); English transl. in Math. USSR Sb. 16 (1972), 471–500; II., Mat. Sb. 88 (1972), no. 1, 3–30 (Russian); English transl. in Math. USSR Sb. 17 (1972), no. 1, 1–29.MathSciNetGoogle Scholar
  4. 4.
    Merzlyakov S. G., Invariant subspaces of a multiple differentiation operator, Mat. Zametki 33 (1983), 701–713. (Russian)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Merzlyakov S. G., On subspaces of analytical functions invariant under multiple differentiation operator, Mat. Zametki 40 (1986), 635–639. (Russian)MathSciNetGoogle Scholar

References

  1. 1.
    Braun R. W., Meise R., Generalized Fourier expansions for zero-solutions of surjective convolution operators on D{ω}(ℝ)′, Arch. Math. 55 (1990), 55–63.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Braun R. W., Meise R., Taylor B. A., Ultradifferentiable functions and Fourier analysis, Result. Math. 17 (1990), 206–237.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Berenstein C. A., Taylor B. A., A new look at interpolation theory for entire functions of one variable, Adv. Math. 33 (1979), 109–143.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Franken U., Meise R., Generalized Fourier expansions for zero solutions of surjective convolution operators on D′(ℝ) and D′{ω}(ℝ), Note di Mat. (to appear).Google Scholar
  5. 5.
    Meise R., Sequence space representations for (DFN)-algebras of entire functions modulo closed ideals. J. Reine Angew. Math. 363 (1985), 59–95.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Meise R., Sequence space representations for zero-solutions of convolution equations on ultradifferentiable functions of Roumieu type, Studia Math. 92 (1989), 211–230.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Meise R., Momm S., Taylor B. A., Splitting of slowly decreasing ideals in weighted algebras of entire functions, in Complex Analysis II LNM (C. A. Berenstein, ed.), vol. 1276, Springer, Berlin, 1987, pp. 229–252.CrossRefGoogle Scholar
  8. 8.
    Meise R., Schwerdtfeger K., Taylor B. A., Kernels of slowly decreasing convolution operators, Doga Tr. J. Math. 10 (1986), 176–197.MathSciNetzbMATHGoogle Scholar
  9. 9.
    Meise R., Taylor B. A., Vogt D., Equivalence of slowly decreasing conditions and local Fourier expansions, Indiana Univ. Math. J. 36 (1987), 729–756.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Momm S., Closed principal ideals in nonradial Hörmander algebras, Arch. Math (to appear).Google Scholar
  11. 11.
    Momm S., Convolution equations on the analytic functions on convex domains in the plane, preprint (1991).Google Scholar
  12. 12.
    Napalkov V. V., A basis in the space of solutions of a convolution equation, Math. Notes Acad. Sci. USSR 43 (1988), 27–33.MathSciNetzbMATHCrossRefGoogle Scholar

References

  1. 1.
    Berenstein C. A., Kawai T., Struppa D. C., in preparation.Google Scholar
  2. 2.
    Berenstein C. A., Struppa D. C., On explicit solutions to the Bezout equation, Systems and Control Lett. 4 (1984), 33–39.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Berenstein C. A., Struppa D. C., 1-inverses of polynomial matrices of non-constant rank, Systems and Control Lett. 6 (1986), 309–314.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Berenstein C. A., Struppa D. C., On the Fabry-Ehrenpreis-Kawai gap theorem, Publ. RIMS Kyoto Univ. 23 (1987), 565–574.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Berenstein C. A., Struppa D. C., Dirichlet series and convolution equations, Publ. RIMS Kyoto Univ. 24 (1988), 783–810.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Berenstein C. A., Struppa D. C., Convolution equations and complex analysis, Contemporary Problems in Mathematics, Fundamental Directions, vol. 5, pp. 5–110. (Russian)Google Scholar
  7. 7.
    Berenstein C. A., Yger A., Effective Bezout identities in ℚ[z 1,...,z n], Acta Math. 166 69–120.Google Scholar
  8. 8.
    Bernstein V., Series de Dirichlet, Paris, 1933.Google Scholar
  9. 9.
    Brownawell D. W., Distance to common zeros and lower bounds for polynomials, preprint.Google Scholar
  10. 10.
    Ehrenpreis L., Fourier Analysis in Several Complex Variables, New York, 1970.Google Scholar
  11. 11.
    Neyman R., Interpolation of entire functions of infinite order, Ph.D. Thesis, Univ. of Maryland, 1990.Google Scholar
  12. 12.
    Kawai T., The Fabry-Ehrenpreis gap theorem and linear differential equations of infinite order, Am. J. Math. 109 (1987), 57–64.MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Lech C., A metric result about the zeros of a complex polynomial ideal, Ark. Math. 52 (1958), 543–554.MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Mandelbrojt S., Dirichlet Series, Dordrecht, 1972.Google Scholar

References

  1. 1.
    Berenstein C.A., Taylor B.A., Interpolation problems inn with applications to harmonic analysis, J. Analyse Math. 38 (1980), 188–254.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Berenstein C. A., Gay R., Yger A., Analytic continuation of currents and division problems, Forum Math. 1 (1989), 15–51.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Berenstein C.A., Yger A., Formules de représentation intégrale et problèmes de division. Diophantine Approximations and Transcendental Numbers. (P. Phillippon, ed.), Luminy 1990, Walter de Gruyter, Berlin, 1992, pp. 15–37.Google Scholar
  4. 4.
    Berenstein C. A., Yger A., Exponential polynomials and D-modules (to appear).Google Scholar
  5. 5.
    Berenstein C. A., Yger A., Ideals generated by exponential polynomials, Advances in Math. 60 (1986), 1–80.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Berenstein C. A., Yger A., On Lojasiewicz inequalities for exponential polynomials, J. Math. Anal. Applications 129 (1988), 166–195.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Briançon J., Skoda H., Sur la clôture intégrade d’un idéal de germes de fonctions holomorphes en un point den, Comptes Rendus Acad. Sci. Paris, ser. A 278 (1974), 949–951.zbMATHGoogle Scholar
  8. 8.
    Ehrenpreis L., Fourier Analysis in several Complex variables, Wiley Interscience, New York, 1970.zbMATHGoogle Scholar

References

  1. 1.
    Carleson L., The corona theorem, Proc. 15th Scandinavian Congress, Lect. Notes in Math., vol. 118, Springer-Verlag, 1970, pp. 121–132.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Garnett J., Bounded Analytic Functions, Academic Press, New York, 1981.zbMATHGoogle Scholar

References

  1. 3.
    Tolokonnikov V. A., Estimates in the Carleson corona theorem, ideals of the algebra H, a problem of Sz.-Nagy, Zap. Nauchn. Sem. LOMI 113 (1981), 178–198 (Russian); English transl. in J. Soviet Math. 22 (1983), 1814–1828.MathSciNetzbMATHGoogle Scholar
  2. 4.
    Tolokonnikov V. A., Interpolating Blaschke products and the ideals of the algebra H, Zap. Nauchn. Sem. LOMI 126 (1983), 196–201 (Russian); English transl. in J. Soviet Math. 27 (1984), 2549–2553.MathSciNetzbMATHGoogle Scholar
  3. 5.
    Tolokonnikov V. A., The corona theorem in algebras of bounded analytic functions, VINITI (1984), no. 251-84DEP, 1–61 (Russian); English transl. in Amer. Math. Soc. Transl. 149 (1991), no. 2, 61–95.Google Scholar

References

  1. 1.
    Nikol’skii N. K., Invariant subspaces in operator theory and function theory, Itogi Nauki i Tekhniki:Mat. Anal. 12 (1974), 199–412, VINITI, Moscow (Russian); English transl. in J. Soviet Math. 5 (1976), no. 2.Google Scholar
  2. 2.
    Krasichkov-Ternovskii I. F., Invariant subspaces of analytic functions. II. Spectral synthesis on convex domains, Mat. Sb. 88 (1972), no. 1, 3–30 (Russian); English transl. in Math. USSR Sb. 17 (1972), no. 1, 1–29.MathSciNetGoogle Scholar
  3. 3.
    Nikol’skii N. K., Selected problems of weighted approximation and spectral analysis, Trudy Mat. Inst. Steklov 120 (1974) (Russian); English transl. in Proc. Steklov Inst. Math. 120 (1974).Google Scholar
  4. 4.
    Korenbljum B., A Beurling-type theorem, Acta Math. 135 (1975), 187–219.MathSciNetCrossRefGoogle Scholar
  5. 5.
    Apresyan S. A., A description of the algebra of analytic functions admitting localization of ideals, Zap. Nauchn. Sem. LOMI 70 (1977), 267–269 (Russian); English transl. in J. Soviet Math. 23 (1983), no. 1, 2091–2093.zbMATHGoogle Scholar
  6. 6.
    Nikol’skii N. K., The technique of using a quotient operator for the localization of z-invariant subspaces, Dokl. Acad. Nauk SSSR 240 (1978), no. 1, 24–27 (Russian); English transl. in Soviet Math. Dokl. 19 (1978), no. 3, 545–549.Google Scholar
  7. 7.
    Gribov M. B., Nikolskii N. K., Invariant subspaces and rational approximation, Zap. Nauchn. Sem. LOMI 92 (1979), 103–114. (Russian)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Nikolskii N. K., Lectures on the shift operator. I, Zap. Nauchn. Sem. LOMI 39 (1974), 59–93 (Russian); English transl. in J. Soviet Math. 8 (1977), no. 1.MathSciNetGoogle Scholar
  9. 9.
    Hilden H. M., Wallen L. J., Some cyclic and non-cyclic vectors of certain operators, Indiana Univ. Math. J. 23 (1974), no. 7, 557–565.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Shamoyan F. A., Division theorems and closed ideals in algebras of analytic functions with a majorant of finite growth, Izv. Akad. Nauk Arm.SSR, Matematika 15 (1980), no. 4, 323–331. (Russian)MathSciNetzbMATHGoogle Scholar

References

  1. 1.
    Frankfurt R., Subnormal weighted shifts and related function spaces, J. Math. Anal. Appl. 52 (1975), 471–489.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Frankfurt R., Subnormal weighted shifts and related function spaces. II, J. Math. Anal. Appl. 55 (1976), 1–17.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Frankfurt R., Function spaces associated with radially symmetric measures, J. Math. Anal. Appl. 60 (1977), 502–541.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Beurling A., On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1949), 239–255.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Shapiro H. S., Weakly invertible elements in certain function spaces, and generators of1, Mich. Math. J. 11 (1964), 161–165.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Shapiro H. S., Weighted polynomial approximation and boundary behaviour of analytic functions, Modern problems of the theory of analytic functions, Nauka, Moscow, 1966, pp. 326–335.Google Scholar
  7. 7.
    Shapiro G., Some observations concerning weighted polynomial approximation of holomorphic functions, Matem. Sbornik 73 (1967), no. 3, 320–330. (Russian)MathSciNetGoogle Scholar
  8. 8.
    Mergeljan S. N., On completeness of a system of analytic functions, Uspekhi Matem. Nauk 8 (1953), no. 4, 3–63. (Russian)Google Scholar
  9. 9.
    Aharonov D., Shapiro H. S., Shields A. L., Weakly invertible elements in the space of square-summable holomorphic functions, J. London Math. Soc. 9 (1974), 183–192.MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Shields A. L., Weighted shift operators and analytic function theory, Topics in Operator Theory, Amer. Math. Soc., Providence, R. I., 1974, pp. 49–128.zbMATHGoogle Scholar
  11. 11.
    Brennan J., Invariant subspaces and weighted polynomial approximation, Ark. Mat. 11 (1973), 167–189.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Hedberg L. I., Weighted mean approximation in Caratheodory regions, Math. Scand. 23 (1968), 113–122.MathSciNetzbMATHGoogle Scholar
  13. 13.
    Horowitz C., Zeros of functions in the Bergman spaces, Duke Math. J. 41 (1974), 693–710.MathSciNetzbMATHCrossRefGoogle Scholar

References

  1. 1.
    Korenblum B., An extension of the Nevanlinna theory, Acta Math. 135 (1975), 187–219.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Korenblum B., A Beurling-type theorem, Acta Math. 138 (1977), 265–293.MathSciNetzbMATHCrossRefGoogle Scholar

References

  1. 3.
    Hedenmalm H., Shields A., Invariant subspaces in Banach spaces of analytic functions, Michigan Math. J. 37 (1990), 91–104.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 4.
    Shields A., Cyclic vectors in Banach spaces of analytic functions, Operators and Function Theory (S. Power, ed.), 1984, pp. 315–350.Google Scholar
  3. 5.
    Korenblum B., Outer functions and cyclic elements in Bergman spaces, J. Funct. Anal. 115 (1993), 104–118.MathSciNetzbMATHCrossRefGoogle Scholar

References

  1. 1.
    Shapiro Harold S., Weakly invertible elements in certain function spaces, and generators in1, Mich. Math. J. 11 (1964), 161–165.MathSciNetCrossRefGoogle Scholar
  2. 2.
    Shapiro Harold S., Weighted polynomial approximation and boundary behaviour of holomorphic functions, Contemporary problems of analytic function theory, Nauka, Moscow, 1966, pp. 326–335.Google Scholar
  3. 3.
    Shapiro H., Some remarks on weighted polynomial approximation of holomorphic functions, Mat. Sbornik 73 (1967), 320–330.Google Scholar
  4. 4.
    Aharonov D., Shapiro H. S., Shields A. L., Weakly invertible elements in the space of square-summable holomorphic functions, J. London Math. Soc. 9 (1974), 183–192.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Carleson L., Sets of uniqueness for functions regular in the unit circle, Acta Math. 87 (1952), 325–345.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Duren P. L., Romberg B. W., Shields A. L., Linear functionals on Hp spaces with 0<p<1, J. für Reine und Angew. Math. 238 (1969), 32–60.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Nikolskii N. K., Spectral synthesis and weighted approximation problem in spaces of analytic functions, Izv. AN Arm. SSR. Ser. Matem. 6 (1971), no. 5, 345–367. (Russian)Google Scholar
  8. 8.
    Shields Allen L., Weighted shift operators and analytic function theory, Topics in operator theory, vol. 13, Amer. Math. Soc., Providence, 1974, pp. 49–128.zbMATHGoogle Scholar
  9. 9.
    Shields Allen L., Cyclic vectors in some spaces of analytic functions, Proc. Royal Irish Acad. 74, Section A (1974), 293–296.MathSciNetzbMATHGoogle Scholar

References

  1. 10.
    Shamoyan F. A., Weak invertibility in some spaces of analytic functions, Dokl. AN Arm. SSR 74 (1982), no. 4, 157–161.MathSciNetzbMATHGoogle Scholar
  2. 11.
    Korenblum B., Cyclic elements in some spaces of analytic functions, Bull. Amer. Math. Soc. 5 (1981), no. 3, 317–318.MathSciNetzbMATHCrossRefGoogle Scholar

References

  1. 1.
    Aleksandrov A. B., Approximation by rational functions and an analog of the M. Riesz theorem on conjugate functions for Lp-spaces with p∈(0, 1) Math. USSR Sbornik 35 (1979), 301–316.zbMATHCrossRefGoogle Scholar
  2. 2.
    Aleksandrov A. B., Invariant subspaces of the backward shift operator in the space Hp (p∈(0, 1), Zapiski nauchn. semin. LOMI 92 (1979), 7–29 (Russian)zbMATHGoogle Scholar
  3. 3.
    Aleksandrov A. B., On the A-integrability of boundary values of harmonic functions, Matem. zametki 30 (1981), no. 1, 59–72. (Russian)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Aleksandrov A. B., Essays on non locally convex Hardy classes, Lect. Notes Math. 864 (1981), 1–89.zbMATHCrossRefGoogle Scholar
  5. 5.
    Aleksandrov A. B., Invariant subspaces of the shift operators. Axiomatic approach, Zapiski nauchn. semin. LOMI 113 (1981), 7–26 (Russian); English transl in J. Soviet Math. 22 (1983), no. 6, 1695–1708.MathSciNetzbMATHGoogle Scholar
  6. 6.
    Coifman R. R., A real variable characterization of Hp, Studia Math. 51 (1974), no. 3, 269–274.MathSciNetzbMATHGoogle Scholar
  7. 7.
    Nikolskii N. K., Treatise of the Shift Operator, Springer-Verlag, 1986.Google Scholar

References

  1. 1.
    Gelfand I. M., Raikov D. A., Shilov G. E., Commutative Normed Rings, Phys.-Math., Moscow, 1960. (Russian)Google Scholar
  2. 2.
    Wiener N., Fourier Integral and some its Applications, Phys.-Math., Moscow, 1963. (Russian)Google Scholar
  3. 3.
    Beurling A., Sur les integrales de Fourier absolument convergentes et leur application a une transformation fonctionelle, Congres des Math. Scand., Helsingfors, 1938.Google Scholar
  4. 4.
    Nyman B., On the one-dimensional translations group and semi-group in certain function spaces, Thesis, Uppsala, 1950.Google Scholar
  5. 5.
    Korenblum B. I., Generalization of Tauber’s Wiener’s theorem and harmonic analysis of quickly growing functions, Trudy Moskovskogo mat. ob-va 7 (1958), 121–148. (Russian)Google Scholar
  6. 6.
    Vretblad A., Spectral analysis in weighted L 1-spaces on ℝ, Ark. Math. 11 (1973), 109–138.MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Djarbashyan M. M., Uniqueness theorems for Fourier transforms and for infinitely differentiable functions, Izv. AN Arm. SSR ser.f.-m. nauk 10 (1957), no. 6, 7–24. (Russian)MathSciNetGoogle Scholar
  8. 8.
    Babenko K. I., About some classes of infinitely differentiable function’s spaces, Dokl. AN USSR 132 (1960), no. 6, 1231–1234. (Russian)MathSciNetGoogle Scholar
  9. 9.
    Gurarii V. P., Levin B. Ya., About completeness of system of shifts in the space L (0, ∞) with weight, Zap. mekh.-mat. facult. KhGY and KhMO 30 (1964), no. 4, 178–185. (Russian)MathSciNetGoogle Scholar
  10. 10.
    Gurarii V. P., Harmonic analysis in the spaces with weight, Trudy Mosk. mat. ob-va 35 (1976), 21–76. (Russian)MathSciNetGoogle Scholar

References

  1. 11.
    Borichev A., Hedenmalm H., Completeness of translates in weighted Hilbert spaces on the half-line, Centre de recerca matemàtica, Barcelona, Preprint No. 196 (1993).Google Scholar
  2. 15.
    Borichev A., Hedenmalm H., Completeness of translates in weighted Lp spaces on the half-line, Uppsala University, Dept. of Math. Report (1993).Google Scholar

References

  1. 1.
    Styf B., Closed translation invariant subspaces in a Banach space of sequences, summable with weights, Uppsala University, Dept. of Math., Report 3 (1977).Google Scholar
  2. 2.
    Nikolskii N. K., About invariant subspaces of weighted shift operators, Matem. Sbornik 74 (1967), no. 2, 171–190 (Russian); English transl. in Math. USSR Sbornik 74(116) (1967), 172–190.Google Scholar
  3. 3.
    Nyman B., On the one-dimensional translation group and semi-group in certain function spaces, Uppsala, 1950.Google Scholar
  4. 4.
    Gurarii V. P., Spectral synthesis of bounded functions on a half-axis, Funktsional. Anal. i Prilozhen. 3 (1969), no. 4, 34–48 (Russian); English transl. in Funct. Anal. Appl. 3 (1969), no. 4, 282–294.MathSciNetGoogle Scholar

References

  1. 5.
    Domar Y., Cyclic elements under translation in weighted L1 spaces on ℝ+, Ark. mat. 19 (1981), no. 1, 137–144.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 6.
    Domar Y., Extensions of the Titchmarsh convolution theorem with applications in the theory of invariant subspaces, Proc. London Math. Soc. 46 (1983), no. 3, 288–300.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 7.
    Bachar J. M., Bade W. G., Curtis P. C. Jr., Dales H. G., Thomas M. P. (eds.), Radical Banach algebras and automatic continuity, Proceedings, Long Beach 1981, Lect. Notes in Math., vol. 975, 1983.Google Scholar

References

  1. 8.
    Domar Y., Convolution theorems of Titchmarsh type on discreten, Proc. Edinburg Math. Soc. 32 (1989), 449–457.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 9.
    Borichev A. A., A Titchmarsh-type convolution theorem on the group ℤ, Arkiv för matematik 27 (1989), 179–187.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 10.
    Borichev A. A., The generalized Fourier transformation, Titchmarsh’s theorem and asymptotically holomorphic functions, Leningrad Math. J., 1 (1990), 825–857.MathSciNetGoogle Scholar

References

  1. 1.
    Gurarii V. P., Spectral synthesis of bounded functions on half-axe, Funkts. Anal. i Prilozh. 3 (1969), no. 4, 34–48. (Russian)MathSciNetGoogle Scholar
  2. 2.
    Gurarii V. P., Harmonic analysis in the spaces with weight, Trudy Mosk. mat. ob-va 35 (1976), 21–76. (Russian)MathSciNetGoogle Scholar

References

  1. 1.
    Kahane J.-P., Séries de Fourier absolument convergentes, Springer, 1970.Google Scholar
  2. 2.
    Dyn’kin E. M., Wiener-Levy type theorems and estimates for Wiener-Hopf operators, Matem. issled. 8, (1973), no. 3, 14–25. (Russian)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Kahane J.-P., Une nouvelle réciproque du théorème de Wiener-Lévy, C. R. Acad. Sci. Paris 264 (1967), 104–106.MathSciNetzbMATHGoogle Scholar

References

  1. 4.
    Atzmon A., Spectral synthesis in regular Banach algebras, Israel J. Math. 8 (1970), no. 3, 197–212.MathSciNetzbMATHCrossRefGoogle Scholar

Bibliographie

  1. 1.
    Rudin W., Fourier Analysis on Groups, Interscience, N. Y., 1962.zbMATHGoogle Scholar
  2. 2.
    Kahane J.-P., Idempotents and closed subalgebras of L 1 (\(\mathbb{T}\)), in: Funct. algebras, Proc. Intern. Symp. Tulane Univ. (T. Birtel, ed.), Scott-Forestmann, Chicago, 1966, pp. 198–207.Google Scholar

Bibliographie

  1. 3.
    Rider D., Closed subalgebras of L 1 (\(\mathbb{T}\)), Duke Math. J. 36 (1969), no. 1, 105–115.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 4.
    Oberlin D. M., An approximation problem in Lp[0, 2π], 2<p<∞, Studia Math. 70 (1981), no. 3, 221–224.MathSciNetGoogle Scholar
  3. 5.
    Bachelis G. F., Gilbert J. E., Banach algebras with rider subalgebras, Bull. Inst. Math. Acad. Sinica 7 (1979), no. 3, 333–347.MathSciNetzbMATHGoogle Scholar

References

  1. 1.
    Grabiner S., Weighted shifts and Banach algebras of power series, American. J. Math 97 (1975), 16–42.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Gronbaek N., Weighted discrete convolution algebras, “Radical Banach Algebras and Automatic Continuity”, Proceedings, Lect. Notes Math., vol. 975, 1981.Google Scholar
  3. 3.
    Söderberg D., Generators in radical weighted1, Uppsala University Department of Mathematics Report 9 (1981).Google Scholar
  4. 4.
    Thomas M. P., Approximation in the radical algebra1 (w n) when {w n} is star-shaped, Radical Banach Algebras and Automatic Continuity, Proceedings, Lect. Notes in Math., vol. 975.Google Scholar
  5. 5.
    Thomas M. P., A non-standard closed subalgebra of radical Banach algebra of power series, J. London Math. Soc. 29 (1984), 153–163.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Thomas M. P., A non-standard closed ideal of a radical Banach algebra of power series, Bull. Amer. Math. Soc. 9 (1983), 331–333.MathSciNetCrossRefGoogle Scholar

References

  1. 7.
    Esterle J., Elements for a classification of commutative radical algebras, Radical Banach Algebras and Automatic Continuity, Proceedings, Lect. Notes in Math., vol. 975, pp. 1–62.Google Scholar

References

  1. 1.
    Nyman B., On the one-dimension translation group and semi-group in certain function spaces, Uppsala, 1950.Google Scholar
  2. 2.
    Gurarii V. P., Levin B. Ya., About completeness of the system of the shifts in the space ß(0, ∞) with weight, Zap. Khark. mat. ob-va 30 (1960), no. 4 (Russian)Google Scholar

References

  1. 3.
    Hedenmalm H., Translates of functions of two variables, Duke Math. J. 58 (1989), 251–297.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 4.
    Hedenmalm H., Outer functions of several complex variables, J. Funct. Anal. 80 (1988), 9–15.MathSciNetzbMATHCrossRefGoogle Scholar

Reference

  1. 1.
    Helson, H., Lectures on Invariant Subspaces, Academic Press, NY-London, 1964.zbMATHGoogle Scholar

References

  1. 1.
    Shamoyan F. A., The structure of closed ideals in certain algebras of functions analytic in the disk and smooth up to the boundary, Dokl. Akad. Nauk Arm. SSR 60 (1975), no. 3, 133–136. (Russian)Google Scholar
  2. 2.
    Shamoyan, F. A., Construction of a certain special sequence, and the structure of closed ideals in certain algebras of analytic functions, Izv. Akad. Nauk Arm. SSR 7 (1972), no. 6, 440–470. (Russian)MathSciNetGoogle Scholar
  3. 3.
    Rudin W., Function Theory in Polydiscs, Benjamin, New York, 1969.zbMATHGoogle Scholar
  4. 4.
    Horowitz, C., Oberlin D., Restrictions of functions to diagonal of \(\mathbb{D}^2\), Indiana Univ. Math. J. 24 (1975), no. 7, 767–772.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Shamoyan F. A., A theorem on imbedding in spaces of n-harmonic functions, and some applications, Dokl. Akad. Nauk Arm. SSR 62 (1976), no. 1, 10–14. (Russian)MathSciNetGoogle Scholar
  6. 6.
    Jacewicz Ch. Al., A nonprincipal invariant subspace of the Hardy space on the torus, Proc. Amer. Math. Soc. 31 (1972), 127–129.MathSciNetzbMATHCrossRefGoogle Scholar

References

  1. 7.
    Apostol C., Bercovici H., Foiaş C., Pearcy C., Invariant subspaces, dilation theory, and the structure of the predual of a dual algebra, I, J. Funct. Anal. 63 (1985), 369–404.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 8.
    Hedenmalm H., Richter S., Seip K., Zero sets and invariant subspaces in the Bergman space, in preparation.Google Scholar
  3. 9.
    Hedenmalm H., An invariant subspace in the Bergman space having the codimension two property, J. Reine Angew. Math. (to appear).Google Scholar

References

  1. 1.
    Korenblum B. I., Doklady Akad. Nauk SSSR 200 (1971), no. 1, 24–27 (Russian); English transl. in Soviet Math. Dokl. (1971).Google Scholar
  2. 2.
    Caughran J. G., Zeros of analytic function with infinitely differentiable boundary values, Proc. Amer. Math. Soc. 24 (1970), 700–704.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Nelson D., A characterization of zero sets for C A Mich. Math. J. 18 (1971), 141–147.MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Taylor B. A., Williams D. L., Zeros of Lipschitz functions analytic in the unit disc, Mich. Math. J. 18 (1971), 129–139.MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Taylor B. A., Williams D. L., Ideals in rings of analytic functions with smooth boundary values, Can. J. Math. 22 (1970), 1266–1283.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Wells, J., On the zeros of functions with derivatives in H1 and H, Can. J. Math. 22 (1970), 342–347.zbMATHCrossRefGoogle Scholar

References

  1. 1.
    Hruščëv S. V., Sets of uniqueness for the Gevrey classes, Ark. för mat. 15 (1977), 235–304.MathSciNetGoogle Scholar
  2. 2.
    Korenblum B. I., Closed ideals of the ring A n, Funct. anal. and its applications 6 (1972), no. 3, 38–52. (Russian)MathSciNetGoogle Scholar
  3. 3.
    Taylor B. A., Williams D. L., Ideals in rings of analytic functions with smooth boundary values, Canad. J. Math. 22 (1970), 1266–1283.MathSciNetzbMATHCrossRefGoogle Scholar

References

  1. 1.
    Forelli F., A note on ideals in the disc algebra, Proc. Amer. Math. Soc. 84 (1982), 389–392.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Tomassini G. A remark on the Banach algebra LH (\(\mathbb{D}^N\)), Boll. Un. Mat. Ital. 2 (1969), 202–204.MathSciNetzbMATHGoogle Scholar

References

  1. 3.
    Mortini R., Finitely generated prime ideals in H and A(\(\mathbb{D}\)), Math. Zeit. 191 (1986), 297–302.MathSciNetzbMATHCrossRefGoogle Scholar
  2. 4.
    Gorkin, P., Prime ideals in closed subalgebras of L, Michigan Math J. 33 (1986), 315–323.MathSciNetzbMATHCrossRefGoogle Scholar
  3. 5.
    Mortini R., The Chang-Marshall algebras, Mitteilungen Math. Seminar Giessen 185 (1988), 1–76.MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • N. K. Nikolski
    • 1
    • 2
  1. 1.UFR MathématiquesUniversité Bordeaux-ITalence CEDEXFrance
  2. 2.St. Petersburg BranchSteklov Mathematical InstituteSt. PetersburgRussia

Personalised recommendations