# Differentiability of the composition and quantile operators for regulated and A. E. continuous functions

• R. M. Dudley
• R. Norvaiša
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1703)

## Abstract

If F is a function defined on the range of a function G, let (FoG)(x)=F(G(x)) for all x. Let (Ω, μ) be a finite measure space. The paper treats differentiability of the two-function composition operator f, g(F+f)o(G+g) into L q (Ω, μ). where g→0 in L s and 1≤q<s. The case where f=0, namely g↦Fo(G+g), for suitable F, G, is a special case of the so-called Nemytskii or superposition operator, which has been extensively studied, as in the book by J. Appell and P. P. Zabrejko, Nonlinear Superposition Operators, Cambridge University Press, 1990, Chapter 3. The remainder R0 in differentiating the two-function composition operator splits as R0=R1+R2, where R1fo(G+g)foG and R2Fo(G+g)FoG(F′oG)·g. Then R2 is the remainder for the Nemytskii operator. Thus, this paper concentrates on R1. For suitable G, the question then is, for what f, and uniformly over what classes of f, is ‖tf○(G+g)-tfg q =o({t{+‖g s ) as {t{+‖g g →0, or equivalently ‖f○(G+g)-fG g =o(1) as ‖g s →0. This is a question of continuity or equicontinuity of Nemytskii operators at points. Previously, for the most part, global continuity had been treated. The individual f are shown to be exactly those which are continuous almost everywhere, suitably measurable, and such that {f(x){/(1+{x{ s/q ) is bounded in x. Large classes of f, called “uniformly Riemann,” are given over which the differentiability is uniform. These give in particular Fréchet differentiability WΦ×L s L q for an arbitrary Φ-variation space WΦ, e.g. any p-variation space Wp. Very similar results are found for the quantile operator g(G+g) for functions G and g from an interval J into ℝ, where H(y)≔inf{xJ:H(x)y}. Also, a theorem is given on composition of Banach-valued functions with supremum norms, where again f need not be differentiable.

## Keywords

Composition Operator Supremum Norm Riemann Function Superposition Operator Finite Measure Space
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

## References

1. 
P. K. Andersen—Ø. Borgan—R. D. Gill—N. Keiding, Statistical Models Based on Counting Processes, Springer-Verlag, Berlin, 1993.
2. 
J. Appell, Upper estimates for superposition operators and some applications, Ann. Acad. Sci. Fenn. (=Suomalaisen Tiedeakatemian Helsingfors Toimitsukia) Ser. A I. Math., 8 (1983), pp. 149–159.
3. 
J. Appell, The superposition operator in function spaces—A survey, Expositiones Math., 6 (1988), pp. 209–270.
4. 
J. Appell—P. P. Zabrejko, Nonlinear superposition operators, Cambridge University Press, 1990.Google Scholar
5. 
V. O. Asatiani—Z. A. Chanturia, The modulus of variation of a function and the Banach indicatrix, Acta Sci. Math., 45 (1983), pp. 51–66.
6. 
V. I. Averbukh—O. G. Smolyanov, The theory of differentiation in linear topological spaces, Russian Math. Surveys, 22 (1967), no. 6, pp. 201–258=Uspekhi Mat. Nauk, 22 (1967), no. 6, pp. 201–260.
7. 
V. I. Averbukh—O. G. Smolyanov, The various definitions of the derivative in linear topological spaces, Russian Math. Surveys, 23 (1968), no. 4, pp. 67–113=Uspekhi Mat. Nauk, 23 (1968), no. 4, pp. 67–116.
8. 
S. K. Berberian, The character space of the algebra of regulated functions, Pacific J. Math., 74 (1978), pp. 15–36.
9. 
P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968.
10. 
P. Billingsley—F. Topsøe, Uniformity in weak convergence, Z. Wahrscheinlichkeitsth. verw. Geb., 7 (1967), pp. 1–16.
11. 
N. H. Bingham, Fluctuation theory in continuous time, Adv. Appl. Prob. 7 (1975), pp. 705–766.
12. 
N. Bourbaki, Fonctions d'une variable réelle, Hermann, Paris, 1976.
13. 
M. Brokate—F. Colonius, Linearizing equations with state-dependent delays, Appl. Math. Optimiz., 21 (1990), pp. 45–52.
14. 
W. Bücher, Differentiabilité de la composition et complétitude de certains espaces fonctionnels, Comm. Math. Helv., 43 (1968), pp. 256–288.
15. 
Z. A. Chanturia [Čanturija], The modulus of variation of a function and its application in the theory of Fourier series, Dokl. Akad. Nauk SSSR, 214 (1974), pp. 63–66 =Soviet Math. Dokl. 15 (1974), pp. 67–71.
16. 
D. L. Cohn, Measure Theory, Birkhäuser, Boston, 1980.
17. 
R. B. Darst, A characterization of universally measurable sets, Proc. Camb. Philos. Soc., 65 (1969), pp. 617–618.
18. 
C. Dellacherie—P.-A. Meyer, Probabilities and Potential, Hermann, Paris, 1975; English transl. North-Holland, Amsterdam, 1978.
19. 
J. Dieudonné, Foundations of Modern Analysis, Academic Press, New York, 1960; Fondements de l'analyse moderne, 1, Gauthier-Villars, Paris, 1963.
20. 
R. M. Dudley, Real Analysis and Probability (2d printing, corrected), Chapman and Hall, New York and London, 1993.
21. 
R. M. Dudley, Fréchet differentiability, p-variation and uniform Donsker classes, Ann. Probab., 20 (1992), pp. 1968–1982.
22. 
R. M. Dudley, The order of the remainder in derivatives of composition and inverse operators for p-variation norms, Ann. Statist., 22 (1994), pp. 1–20.
23. 
R. M. Dudley, Empirical processes and p-variation, in Festschrift for Lucien Le Cam, Eds. D. Pollard, E. Torgersen, G. L. Yang, Springer-Verlag, New York, 1997, pp. 219–233.
24. 
N. Dunford—J. T. Schwartz, Linear Operators, Part I, Interscience, New York, 1958.
25. 
W. Esty—R. Gillette—M. Hamilton—D. Taylor, Asymptotic distribution theory of statistical functionals: the compact derivative approach for robust estimators, Ann. Inst. Statist. Math., 37 (1985), pp. 109–129.
26. 
L. T. Fernholz, von Mises calculus for statistical functionals, Lect. Notes in Statist. (Springer-Verlag), 19, 1983.Google Scholar
27. 
A. Filippova, Mises' theorem on the asymptotic behavior of functionals of empirical distribution functions and its statistical applications, Theory Probab. Appl., 7 (1961), pp. 24–57.
28. 
M. Fréchet, La notion de différentielle dans l'analyse générale, Ann. Sci. Ecole Norm. Sup. (Sér. 3), 42 (1925), pp. 293–323.
29. 
B. V. Gnedenko—A. N. Kolmogorov, Limit Distributions for Sums of Independent Random Variables, 2d ed. Transl. and Ed. by K. L. Chung, Addison-Wesley, Reading, Mass, 1968.Google Scholar
30. 
C. Goffman—G. Moran—D. Waterman, The structure of regulated functions, Proc. Amer. Math. Soc., 57 (1976), pp. 61–65.
31. 
H. Goldberg—W. Kampowsky—F. Tröltzsch, On Nemytskij operators in Lp-spaces of abstract functions, Math. Nachr., 155, pp. 127–140.Google Scholar
32. 
A. Gray, Differentiation of composites with respect to a parameter, J. Austral. Math. Soc. (Ser. A), 19 (1975), pp. 121–128.
33. 
T. H. Hildebrandt, Introduction to the Theory of Integration, Academic Press, New York, 1963.
34. 
E. W. Hobson, The Theory of Functions of a Real Variable and the Theory of Fourier's Series, 1, 3d ed. (1927), repr. Dover, New York, 1957.
35. 
M. A. Krasnosel'skiî—P.P. Zabreîko—E.I. Pustyl'nik— P. Sobolevskiî, Integral operators in spaces of summable functions, Nauka, Moscow, 1966; transl. by T. Ando, Noordhoff, Leyden, 1976.
36. 
R. Lucchetti—F. Patrone, On Nemytskii's operator and its application to the lower semicontinuity of integral functionals, Indiana Univ. Math. J., 29, pp. 703–713.Google Scholar
37. 
A. Mukherjea—K. Pothoven, Real and Functional Analysis, Plenum, New York and London, 1978.
38. 
J. Musielak—W. Orlicz, On generalized variations (I), Studia Math., 18 (1959), pp. 11–41.
39. 
E. Nelson, Regular probability measures on function space, Ann. Math., 69 (1959), pp. 630–643.
40. 
S. Perlman, Functions of generalized variation, Fund. Math., 105 (1980), pp. 199–211.
41. 
J. A. Reeds III, On the definition of von Mises functionals, Ph. D. Dissertation, Harvard University, 1976.Google Scholar
42. 
B. Riemann, Über die Darstellbarkeit einer Funktion durch eine trigonometrische Reihe, Abh. Gesell. Wiss. Göttingen Math. Kl. 13, pp. 87–132; repr. in Bernhard Riemann: Gesammelte mathematische Werke und wissenschaftlicher Nachlass, with commentaries, 2d. ed., ed. Raghavan Narasimhan, Springer-Verlag (Heidelberg) and Teubner (Leipzig), 1990.Google Scholar
43. 
F. Riesz—B. Sz.-Nagy, Leçons d'analyse fonctionelle, 3d ed., Gauthier-Villars, Paris, 1955; Functional Analysis (transl. by L. F. Boron), Ungar, New York, 1955.
44. 
J. Sebastião E Silva, Le calcul différentiel et intégral dans les espaces localement convexes, réels ou complexes I, II, Rend. Accad. Lincei Sci. Fis. Mat. Nat., (Ser. 8) 20 (1956), pp. 743–750, 21 (1956), pp. 40–46.
45. 
G. E. Shilov—B. L. Gurevich, Integral, Measure and Derivative: A Unified Approach, Transl. and Ed. by R. A. Silverman, Prentice-Hall, Englewood Cliffs, N.J., 1966.Google Scholar
46. 
I. V. Shragin, Superposition measurability, Sov. Math. (Iz. Vuz.), 19 (1975), pp. 69–76 =Izv. Vyssh. Uch. Zaved., 1975, no. 1, pp. 82–92.Google Scholar
47. 
I. V. Shragin, Classes of measurable vector functions and Nemytskii's operators I, II, Russian Math. (Iz. Vuz.), 38 (1994), no. 4, pp. 45–55, no. 5, pp. 70–79, =Izv. Vyssh. Uch. Zaved., 1994, no. 4, pp. 48–58, no. 5, pp. 70–79.
48. 
W. Sierpiński, Sur une propriété des fonctions qui n'ont que des discontinuités de première espèce, Bull. Sect. Scient. Acad Roumaine, 16 (1933), no. 1/3, pp. 1–4. We found these references from secondary sources but have not seen them in the original.
49. 
A. V. Skorohod, Limit theorems for stochastic processes with independent increments, Theory Prob. Appl. 2 (1957), pp. 138–171.
50. 
R. Taberski, On the power variations and pseudovariations of positive integer orders, Demonstratio Math., 19 (1986), pp. 881–893.
51. 
A. E. Taylor, The differential: nineteenth and twentieth century developments, Arch. Hist. Exact Sci., 12 (1974), pp. 355–383.
52. 
O. D. Tsereteli (Cereteli), The metric properties of a function of bounded variation, (in Russian), Akad. Nauk Gruzin. SSR Trudy Tbiliss. Mat. Inst. Razmadze, 26 (1959), pp. 23–64. We found these references from secondary sources but have not seen them in the original.
53. 
O. D. Tsereteli (Cereteli), On the Banach indicatrix and some of its applications, (in Russian), Soobshch. Akad. Gruzin. SSR 25 (1960), pp. 129–136. We found these references from secondary sources but have not seen them in the original.
54. 
M. M. Vaînberg, Variational methods in the study of nonlinear operators, Gostekhizdat, Moscow, 1956; English transl. Holden-Day, San Francisco, 1964.
55. 
R. von Mises, Les lois de probabilité pour les fonctions statistiques, Ann. Inst. H. Poincaré, 6 (1936), pp. 185–212.
56. 
R. von Mises, On the asymptotic behavior of differentiable statistical functions, Ann. Math. Statist., 18 (1947), pp. 309–348.
57. 
Wang Sheng-Wang, Differentiability of the Nemyckii operator, Doklady Akad. Nauk SSSR, 150 (1963), pp. 1198–1201 (Russian); Sov. Math. Doklady, 4 (1963), pp. 834–837.
58. 
L. C. Young, General inequalities of Stieltjes integrals and the convergence of Fourier series, Math. Ann., 115(1938), pp. 581–612.
59. 
W. H. Young, On the distinction of right and left at points of discontinuity, Quarterly J. Pure and Applied Math., 39 (1908), pp. 67–83.
60. 
W. H. Young, On the discontinuities of a function of one or more real variables, Proc. London Math. Soc. (Ser. 2) 8 (1909), pp. 117–124.Google Scholar
61. 
E. Zeidler, Nonlinear Functional Analysis and its Applications Vols I, II/B, Springer-Verlag, Berlin, 1985, 1990. 