Advertisement

Product integrals, young integrals and p-variation

  • R. M. Dudley
  • R. Norvaiša
Chapter
Part of the Lecture Notes in Mathematics book series (LNM, volume 1703)

Abstract

Let \(\mathbb{B}\)be a Banach algebra with identity \(\mathbb{I}\). Consider a function f defined on an interval [a, b] and with values in \(\mathbb{B}\). Let {a=x0<...<b=x n } be a partition of [a, b]. Then the product integral with respect to f over [a, b] is defined as the limit of the product from i=1 to n of \(\mathbb{I}\)+f(xi-1), if it exists, where the limit is taken under refinements of partitions. It is proved that the product integral with respect to f over [a, b] exists if fW p ([a,b];)\(\mathbb{B}\), 0<p<2, i.e., if f has bounded p-variation for some 0<p<2, as shown for f continuous by M. A. Freedman, Trans. Amer. Math. Soc. 279 (1983), 95–112. A necessary and sufficient condition for the existence of the product integral is given when \(\mathbb{B} = \mathbb{R}\). An operator \(\mathcal{P}_a\)from \(\mathcal{W}_p ([a,b];\mathbb{B})\)into itself is induced by an indefinite product integral. The main result says that \(\mathcal{P}_a\)is Fréchet differentiable. R. D. Gill and S. Johansen (Ann. Statist. 18, 1990, 1501–1555) had shown compact differentiability in the supremum norm, on sets uniformly bounded in 1-variation norm. The present paper shows that when restricted to rightor left-continuous elements of \(\mathcal{W}_p ([a,b];\mathbb{B})\), \(\mathcal{P}_a\)is analytic. To prove these results a generalized Stieltjes integral due to L. C. Young is developed, as are variants of it called left Young (LY) and right Young (RY) integrals, and the Duhamel formula is extended to (LY) and (RY) integrals. Also using Young integrals a logarithm operator \(\mathcal{L}_a\)is defined so that \(\mathcal{L}_a (f)\)exists for each \(f \in \mathcal{W}_p ([a,b];\mathbb{B})\), 0<p<2, such that the function xf(x)−1 is in \(\ell _\infty ([a,b];\mathbb{B})\). The operators \(\mathcal{P}_a\)and \(\mathcal{L}_a\)are shown to be inverses of each other. This allows one to determine a unique solution of a linear integral equation and to solve an evolution representation problem whenever the evolution has bounded p-variation for some 0<p<2.

Keywords

Banach Algebra Product Integral Left Endpoint Left Limit Linear Integral Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Averbukh, V. I. and Smolyanov, O. G. (1967). The theory of differentiation in linear topological spaces. Uspekhi Mat. Nauk, 22(6), 201–260 (in Russian). Translated in Russian Math. Surveys, 22(6), 201–258.zbMATHGoogle Scholar
  2. Birkhoff, Garrett (1937). On product integration. J. Math. and Phys. (MIT, Cambridge, Mass), 16, 104–132.CrossRefzbMATHGoogle Scholar
  3. Bonsall, F. F. and Duncan, J. (1973). Complete normed algebras. Springer-Verlag, Berlin.CrossRefzbMATHGoogle Scholar
  4. Bruneau, M. (1974). Variation totale d'une fonction. Lect. Notes in Math. (Springer-Verlag), 721.Google Scholar
  5. Chae, S. B. (1985). Holomorphy and calculus in normed spaces. Dekker, New York.zbMATHGoogle Scholar
  6. Dobrushin, R. L. (1953). Generalization of Kolmogorov's equations for Markov processes with a finite number of possible states. Mat. Sb., 33 (3), 567–596 (in Russian).Google Scholar
  7. Doléans-Dade, C. (1970). Quelques applications de la formule de changement de variables pour les semimartingales. Z. Wahrsch. Verw. Gebiete, 16, 181–194.MathSciNetCrossRefzbMATHGoogle Scholar
  8. Dollard, J. D. and Friedman, C. N. (1979). Product integration with applications to differential equations. Encyclopedia of Math. and its Appl., Vol. 10, Addison-Wesley, Reading, Massachusetts.Google Scholar
  9. Doran, R. S. and Belfi, V. A. (1986). Characterizations of C *-algebras: the Gelfand-Naimark theorems. Dekker, New York.zbMATHGoogle Scholar
  10. Dudley, R. M. (1973). Sample functions of the Gaussian process. Ann. Probab., 1, 66–103.MathSciNetCrossRefzbMATHGoogle Scholar
  11. Dudley, R. M. (1992). Fréchet differentiability, p-variation and uniform Donsker classes. Ann. Probab., 20, 1968–1982.MathSciNetCrossRefzbMATHGoogle Scholar
  12. Dudley, R. M. (1997). Empirical processes and p-variation. In Festschrift for Lucien Le Cam, Eds. D. Pollard, E. Torgersen, G. L. Yang. Springer-Verlag, New York, pp. 219–233.CrossRefGoogle Scholar
  13. Dvoretzky, A. and Rogers, C. A. (1950). Absolute and unconditional convergence in normed linear spaces. Proc. Nat. Acad. Sci. U.S.A., 36, 192–197.MathSciNetCrossRefzbMATHGoogle Scholar
  14. Emery, M. (1978). Stabilité des solutions des équations différentielles stochastiques application aux intégrales multiplicatives stochastiques. Z. Wahrsch. Verw. Gebiete, 41, 241–262.CrossRefzbMATHGoogle Scholar
  15. Fernique, X. (1964). Continuité des processus gaussiens. C. R. Acad. Sci. Paris, 258, 6058–6060.MathSciNetzbMATHGoogle Scholar
  16. Fernique, X. (1964). Régularité de processus gaussiens. Invent. Math., 12, 304–320.MathSciNetCrossRefzbMATHGoogle Scholar
  17. Freedman, M. A. (1983a). Operators of p-variation and the evolution representation problem. Trans. Amer. Math. Soc., 279, 95–112.MathSciNetzbMATHGoogle Scholar
  18. Freedman, M. A. (1983b). Necessary and sufficient conditions for discontinuous evolutions with applications to Stieltjes integral equations. J. Integral Equations, 5, 237–270.MathSciNetzbMATHGoogle Scholar
  19. Fristedt, B. and Taylor, S. J. (1973). Strong variation for the sample functions of a stable process. Duke Math. J., 40, 259–278.MathSciNetCrossRefzbMATHGoogle Scholar
  20. Gal'chuk, L. I. (1984). Stochastic integrals with respect to optional semimartingales and random measures. Theory Probab. Appl., 29, 93–108.MathSciNetCrossRefzbMATHGoogle Scholar
  21. Gantmacher, F. R. (1960). The Theory of Matrices. Vol. 2. Chelsea, New York.zbMATHGoogle Scholar
  22. Gill, R. D. (1994). Lectures on survival analysis. In: Ecole d'Eté de Probabilités de Saint Flour XXII, (ed. P. Bernard). Lect. Notes in Math. (Springer-Verlag), 1581, 115–241.Google Scholar
  23. Gill, R. D. and Johansen, S. (1990). A survey on product-integration with a view toward application in survival analysis. Ann. Statist., 18, 1501–1555.MathSciNetCrossRefzbMATHGoogle Scholar
  24. Gochman, E. Ch. (1958). The Stieltjes integral and its applications. Moscow, GIFML (in Russian).Google Scholar
  25. Hildebrandt, T. H. (1959). On systems of linear differentio-Stieltjes-integral equation. Illinois J. Math., 3, 352–373.MathSciNetzbMATHGoogle Scholar
  26. Hildebrandt, T. H. (1963). Introduction to the theory of integration. Academic Press, New York.zbMATHGoogle Scholar
  27. Hinton, D. B. (1966). A Stieltjes-Volterra integral equation theory. Canad. J. Math., 18, 314–331.MathSciNetCrossRefzbMATHGoogle Scholar
  28. Hönig, C. S. (1975). Volterra Stieltjes-Integral Equations. Mathematics Studies 16. North-Holland, Amsterdam.zbMATHGoogle Scholar
  29. Hönig, C. S. (1980). Volterra Stieltjes-Integral Equations. In: Functional Differential Equations and Bifurcation, (ed. A. F. Izé). Lect. Notes in Math. (Springer-Verlag), 799, 173–216.Google Scholar
  30. Jarník, J. and Kurzweil, J. (1987). A general form of the product integral and linear ordinary differential equations. Czechoslovak Math. J., 37, 642–659.MathSciNetzbMATHGoogle Scholar
  31. Kawada, T. and Kôno, N. (1973). On the variation of Gaussian processes. In: Proc. of the Second Japan-USSR Symposium on Probability Theory, Lect. Notes in Math. (Springer-Verlag), 330, 176–192.Google Scholar
  32. Köthe, G. (1969). Topological Vector Spaces I. Translated by D. J. H. Garling. Springer, New York.zbMATHGoogle Scholar
  33. Krabbe, G. L. (1961a). Integration with respect to operator-valued functions. Bull. Amer. Math. Soc., 67, 214–218.MathSciNetCrossRefzbMATHGoogle Scholar
  34. Krabbe, G. L. (1961b). Integration with respect to operator-valued functions. Acta Sci. Math. (Szeged), 22, 301–319.MathSciNetzbMATHGoogle Scholar
  35. Lebesgue, H. (1973). Leçons sur l'intégration et la recherche des fonctions primitives. 3-rd Edition. Chelsea, New York.zbMATHGoogle Scholar
  36. Leśniewicz, R. and Orlicz, W. (1973). On generalized variations (II). Studia Math., 45, 71–109.MathSciNetzbMATHGoogle Scholar
  37. Love, E. R. (1951). A generalization of absolute continuity. J. London Math. Soc., 26, 1–13.MathSciNetCrossRefzbMATHGoogle Scholar
  38. Love, E. R. (1993). The refinement-Ross-Riemann-Stieltjes (R3S) integral. In Analysis, geometry and groups: a Riemann legacy volume, Eds. H. M. Srivastava, Th. M. Rassias, Part I. Hadronic Press, Palm Harbor, FL, pp. 289–312.Google Scholar
  39. Love, E. R. and Young, L. C. (1938). On fractional integration by parts. Proc. London Math. Soc., 44, 1–35.MathSciNetCrossRefzbMATHGoogle Scholar
  40. Lyons, Terry (1994). Differential equations driven by rough signals (I): an extension of an inequality of L. C. Young. Math. Res. Lett., 1, 451–464.MathSciNetCrossRefzbMATHGoogle Scholar
  41. MacNerney, P. R. (1955). Stieltjes integrals in linear spaces. Ann. of Math., 61, 354–367.MathSciNetCrossRefzbMATHGoogle Scholar
  42. Maisonneuve, B. (1968). Quelques martingales remarquables associées à une martingale continue. Publ. Inst. Statist. Univ. Paris, 17, no. 3, 13–27.MathSciNetzbMATHGoogle Scholar
  43. Manturov, O. V. (1990). A multiplicative integral. In: Itogi Nauki i Tekhniki, Ser. Probl. Geom., Vol. 22, R. V. Gamkrelidze ed., VINITI Moscow, pp. 167–215 (in Russian). Translated in J. Soviet Math. 55 (1991), no. 5, 2042–2076.Google Scholar
  44. Marcus, M. B. and Shepp, L. A. (1971). Sample behavior of Gaussian processes. Proc. Sixth Berkeley Symp. math. Statist. Prob. (1970) 2, 423–442. Univ. of Calif. Press, Berkeley and Los Angeles.Google Scholar
  45. Masani, P. R. (1947). Multiplicative Riemann integration in normed rings. Trans. Amer. Math. Soc., 61, 147–192.MathSciNetCrossRefzbMATHGoogle Scholar
  46. Moore, E. H. (1915). Definition of limit in general integral analysis. Proc. Nat. Acad. Sci. U.S.A., 1, 628.CrossRefGoogle Scholar
  47. Nachbin, L. (1973). Recent developments in infinite dimensional holomorphy. Bull. Amer. Math. Soc., 79, 625–640.MathSciNetCrossRefzbMATHGoogle Scholar
  48. Nashed, M. Z. (1971). Differentiability and related properties of non-linear operators: some aspects of the role of differentials in nonlinear analysis. In: Nonlinear Functional Analysis and Applications, L. B. Rall (ed.), Academic Press, New York, 103–309.CrossRefGoogle Scholar
  49. Peano, G. (1886–7). Integrazione per serie delle equazioni differenziali lineari. Atti Accad. sci. Torino, 22, 437–466. Engl. transl. in “Selected works of Giuseppe Peano”, ed. H. C. Kennedy, Univ. Toronto Press, 1973, pp. 58–66.zbMATHGoogle Scholar
  50. Pollard, S. (1923). The Stieltjes' integral and its generalizations. Quart. J. of Pure and Appl. Math., 49, 73–138.zbMATHGoogle Scholar
  51. Rolewicz, S. (1985). Metric Linear Spaces. Reidel, Dordrecht; PWN, Warsaw.zbMATHGoogle Scholar
  52. Schlesinger, L. (1931). Neue Grundlagen für einen Infinitesimalkalkul der Matrizen. Math. Z., 33, 33–61.MathSciNetCrossRefzbMATHGoogle Scholar
  53. Schlesinger, L. (1932). Weitere Beiträge zum Infinitesimalkalkul der Matrizen. Math. Z., 35, 485–501.MathSciNetCrossRefzbMATHGoogle Scholar
  54. Schmidt, G. (1971). On multiplicative Lebesgue integration and families of evolution operators. Math. Scand., 29, 113–133.MathSciNetzbMATHGoogle Scholar
  55. Schwabik, Š. (1990). The Perron product integral and generalized linear differential equations. Časopis Pěst. Mat., 115, 368–404.MathSciNetzbMATHGoogle Scholar
  56. Schwabik, Š. (1994). Bochner product integration. Math. Bohem., 119, 305–335.MathSciNetzbMATHGoogle Scholar
  57. Segal, I. E. and Kunze, R. A. (1968). Integrals and Operators. McGraw-Hill, New York.zbMATHGoogle Scholar
  58. Taylor, S. J. (1972). Exact asymptotic estimates of Brownian path variation. Duke Math. J., 39, 219–241.MathSciNetCrossRefzbMATHGoogle Scholar
  59. Volterra, V. (1887). Sui fondamenti della teoria delle equazioni differenziali lineari. Memorie della Società Italiana delle Scienze (detta dei XL), serie III, vol. VI, n. 8. In: Opere Matematiche I, 1954, pp. 209–289. Accad. Nazionale dei Lincei, Roma.Google Scholar
  60. Volterra, V. and Hostinsky, B. (1938). Opérations infinitesimales, linéaires. Gauthier-Villars, Paris.zbMATHGoogle Scholar
  61. Wiener, N. (1924). The quadratic variation of a function and its Fourier series. J. Math. and Phys. (MIT, Cambridge, Mass), 3, 73–94.Google Scholar
  62. Young, L. C. (1936). An inequality of the Hölder type, connected with Stieltjes integration. Acta Math., 67, 251–282.MathSciNetCrossRefzbMATHGoogle Scholar
  63. Young, L. C. (1938). General inequalities for Stieltjes integrals and the convergence of Fourier series. Math. Ann., 115, 581–612.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • R. M. Dudley
  • R. Norvaiša

There are no affiliations available

Personalised recommendations