Dynamic load balancing in parallel finite element simulations

  • Arjen Schoneveld
  • Martin Lees
  • Erwan Karyadi
  • Peter M. A. Sloot
Track C2: Computational Science
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1593)


In this paper we introduce a new method for parallelizing Finite Element simulations enabling the use of dynamic load balancing. A physical space partitioning is obtained by dividing the bounding cube into a large number of sub cubes. The cube mesh together with a workload attribute assigned to each cube is used to present an abstract view of the simulation. Based on this abstract view a dynamic load balancing process decides on a possible local repartitioning of the mesh. The dynamic load balancing process itself is diffusion based, that is cubes are migrated between neighboring partitions. A parallel simulation framework (P-CAM) is used to implement the dynamic load balancer.


Load Balance Finite Element Simulation Parallel Process Parallel Simulation Virtual Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    The MacNeal-Schwendler Corporation. Msc/dytran version 4.0 user's manual.Google Scholar
  2. 2.
    G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. Journal of Parallel and Distributed Computing, 7:279–301, 1989.CrossRefGoogle Scholar
  3. 3.
    J. F. de Ronde, A. Schoneveld, and P. M. A. Sloot. Load balancing by redundant decomposition and mapping. Future Generation Computer Systems, 12(5):391–406, 1997.CrossRefGoogle Scholar
  4. 4.
    W. Dzwinel. Virtual particles and search for global optimum. Future Generation Computer Systems, 12(5):371–389, 1996.CrossRefGoogle Scholar
  5. 5.
    Benno J. Overeinder and Peter M. A. Sloot. Breaking the curse of dynamics by task migration: Pilot experiments in the polder metacomputer. In Marian Bubak, Jack Dongarra, and Jerzy Wasśniewky, editors, Recent Advances in Parallel Virtual Machine and Message Passing Interface, volume 1332 of Lecture Notes in Computer Science, pages 194–207, 1997.Google Scholar
  6. 6.
    A. Schoneveld and J. F. de Ronde. P-cam: A framework for parallel complex systems simulations. to appear in FGCS (special issue on Cellular Automata).Google Scholar
  7. 7.
    A. Schoneveld, J. F. de Ronde, P. M. A. Sloot, and J. A. Kaandorp. A parallel cellular genetic algorithm used in finite element simulation. In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H-.P.Schwefel, editors, Parallel Problem Solving from Nature (PPSN IV), pages 533–542, 1996.Google Scholar
  8. 8.
    H. D. Simon. Partitioning of unstructured problems for parallel processing. Computing Systems in Engineering, 2(2/3):135–148, 1991.CrossRefGoogle Scholar
  9. 9.
    P. M. A. Sloot, A. Schoneveld, J. F. de Ronde, and J. A. Kaandorp. Large-scale simulations of complex systems, part i: conceptual framework. Technical Report Working Paper 97-07-070, Santa Fe Institute, 1997.Google Scholar
  10. 10.
    C. Walshaw, M. Cross, and M. G. Everett. A localised algorithm for optimising unstructured mesh partitions. International journal of supercomputer applications, 4(9):280–295, 1995.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • Arjen Schoneveld
    • 1
  • Martin Lees
    • 2
  • Erwan Karyadi
    • 2
  • Peter M. A. Sloot
    • 1
  1. 1.Parallel Scientific Computing and Simulation Group Faculty of Mathematics, Computer Science, Physics and AstronomyUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.The MacNeal-Schwendler CorporationGoudaThe Netherlands

Personalised recommendations