Advertisement

Computational aspects of multi-species lattice-gas automata

  • D. DubbeldamEmail author
  • A. G. Hoekstra
  • P. M. A. Sloot
Track C2: Computational Science
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1593)

Abstract

We present computational aspects of a parallel implementation of a multi-species thermal lattice gas. This model, which can be used to simulate reaction-diffusion phenomena in a mixture of different fluids, is analyzed for a fluid system at global equilibrium. Large system sizes combined with long-time simulation makes parallelization a necessity. We show that the model can be easily parallelized, and possesses good scalability. Profiling information shows the random number generator has become a bottleneck. The model can be statistically analyzed by calculating the dynamic structure factor S(k ω). As an illustration, we measure S(k, ω) for a one-component system, and extract the values of transport coefficients from the spectra. Finally, S(k, ω) is shown for a two-component thermal model, where the central peak is more complicated, due to the coupled entropy-concentration fluctuations.

Keywords

Transport Coefficient Lattice Node Dynamic Structure Factor Global Equilibrium Lattice Grid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D H. Rothman and S. Zaleski. Lattice gas cellular automata. Cambridge University Press, 1997.Google Scholar
  2. 2.
    D. d'Humières, P. Lallemand, and U. Frisch. Lattice gas models for 3-d hydrohynamics. EuroPhys. Lett., 2:291–297, 1986.Google Scholar
  3. 3.
    K. Diemer, K. Hunt, S. Chen, T. Shimomura, and G. Doolen. Velocity dependence of reynolds numbers for several lattice gas models. In Doolen, editor, Lattice Gas Methods for Partial Differential Equations, pages 137–178. Addison-Wesley, 1990.Google Scholar
  4. 4.
    U. Frish, D. d'Humières, B. Hasslacher P. Lallemand, Y. Pomeau, and J.P. Rivet. Lattice gas hydrodynamics in two and three dimensions. Complex systems, 1:649–707, 1987.MathSciNetGoogle Scholar
  5. 5.
    U. Frish, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the navier-stokes equation. Physical Review Letters, 56:1505, April 1986.CrossRefGoogle Scholar
  6. 6.
    P. grosfils, J.P. Boon, and P. Lallemand. Spontaneous fluctuation correlations in thermal lattice-gas automata. Physical Review Letters, 68:1077–1080, 1992.CrossRefGoogle Scholar
  7. 7.
    P. grosfils, J.P. Boon, R. Brito, and M.H. Ernst. Statistical hydrodynamics of lattice-gas automata. Physical Review E, 48:2655–2668, 1993.CrossRefGoogle Scholar
  8. 8.
    D. Hanon and J.P. Boon. Diffusion and correlations in lattice-gas automata. Physical Review E, 56:6331–6339, 1997.CrossRefGoogle Scholar
  9. 9.
    J.P. Boon and S. Yip: Molecular Hydrodynamics. McGraw-Hill, New York, 1980.Google Scholar
  10. 10.
    M. Hénon. Isometric collision rules for the four-dimensional fchc lattice gas. Complex Systems 1, pages 475–494, 1987.MathSciNetGoogle Scholar
  11. 11.
    Copyright (C) 1998 Massachusetts Institute of Technology. The fastest fourier transform in the west. http://theory.lcs.mit.edu. Google Scholar
  12. 12.
    University of Chicago and Mississippi State University. Mpich. http://www.mcs.anl.gov/mpich/.Google Scholar
  13. 13.
    D. Kandhai, A. Koponen, A. Hoekstra, M. Kataja, J. Timonen, and P.M.A. Sloot. Lattice-boltzmann hydrodynamics on parallel systems. Computer Physics Communications, 111:14–26, 1998.CrossRefGoogle Scholar
  14. 14.
    D. Kandhai, D. Dubbeldam, A.G. Hoekstra, and P.M.A. Sloot. Parallel latticeboltzmann simulation of fluid flow in centrifugal elutriation chambers. In Lecture Notes in Computer Science, number 1401, pages 173–182. Springer-Verlag, 1998.Google Scholar
  15. 15.
    W.H. Press, B.P. Flanney, S.A. Teukolsky, and W.T. Vetterling. Numerical Recipes in C. Cambridge University Press, 1988.Google Scholar
  16. 16.
    S.M. Ross. A course in Simulation. Maxwell Macmillian, New York, 1991.Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • D. Dubbeldam
    • 1
    Email author
  • A. G. Hoekstra
    • 1
  • P. M. A. Sloot
    • 1
  1. 1.Faculty for Mathematics, Computer Science, Physics, and AstronomyUniversity of AmsterdamAmsterdamThe Netherlands

Personalised recommendations