Advertisement

Dynamite-blasting obstacles to parallel cluster computing

  • G. D. van Albada
  • J. Clinckemaillie
  • A. H. L. Emmen
  • J. Gehring
  • O. Heinz
  • F. van der Linden
  • B. J. Overeinder
  • A. Reinefeld
  • P. M. A. Sloot
Track C2: Computational Science
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1593)

Abstract

Workstations make up a very large fraction of the total available computing capacity in many organisations. In order to use this capacity optimally, dynamic allocation of computing resources is needed. The Esprit project Dynamite addresses this load balancing problem through the migration of tasks in a dynamically linked parallel program. An important goal of the project is to accomplish this in a manner that is transparent both to the application programmer and to the user. As a test bed, the Pam-Crash software from ESI is used.

Keywords

Migration Decider Load Imbalance Task Migration Message Monitoring Target Machine 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Zhou, X. Zheng, J. Wang and P. Delisle, Utopia: A load sharing facility for large heterogeneous distributed computer systems, Software-Practice and Experience, v. 23, n. 12, pp. 1305–1336, 1993CrossRefGoogle Scholar
  2. [2]
    http://www.genias.de/products/codineGoogle Scholar
  3. [3]
    J. Pruyne and M. Livny, Managing Checkpoints for Parallel Programs—Proc. IPPS Second Workshop on Job Scheduling Strategies for Parallel Processing, 1996Google Scholar
  4. [4]
    M. Litzkow, T. Tannenbaum, J. Basney and M. Livny, Checkpoint and Migration of Unix Processes in the Condor Distributed Processing System—Technical Report 1346, University of Wisconsin, WI, USA, 1997.Google Scholar
  5. [5]
    J. Casas, D.L. Clark, R. Konoru, S.W. Otto, R.M. Prouty and J. Walpole, MPVM: A migration transparent version of PVM, Usenix Computer Systems, v. 8, n. 2, Spring, pp. 171–216, 1995.Google Scholar
  6. [6]
    J. Casas, D. Clark, P. Galbiati, R. Konuru, S. Otto, R. Prouty and J. Walpole, MIST: PVM with Transparant Migration and Checkpointing, Third Annual PVM Users' Group Meeting, Pittsburgh, PA, 1995Google Scholar
  7. [7]
    J. Robinson, S.H. Russ, B. Flachs, B. Heckel, A Task Migration Implementation of the Message-Passing Interface. Proceedings of the 5th IEEE international symposium on high performance distributed computing, pp. 61–68, 1996Google Scholar
  8. [8]
    B.J. Overeinder, P.M.A. Sloot, R.N. Heederik, L.O. Hertzberger, A dynamic load balancing system for parallel cluster computing, Future Generation Computer Systems 12, pp. 101–115, 1996CrossRefGoogle Scholar
  9. [9]
    Matthias Brune, Jörn Gehring and Alexander Reinefeld, Heterogeneous Message Passing and a Link to Resource Management, Journal on Supercomputing, Vol. 11, Kluwer, Boston, pp 355–369, 1997, http://www.uni-paderborn.de/pc2/services/public/1997/97012.ps.ZGoogle Scholar
  10. [10]
    F. Bonomi and A. Kumar, Adaptive optimal load balancing in a nonhomogeneous multiserver system with a central job scheduler. IEEE Trans. on Computers, v. 39, n. 10, pp. 1232–1250, 1990.CrossRefGoogle Scholar
  11. [11]
    J. Casas, R. Konoru, S.W. Otto, R. Prouty and J. Walpole, Adaptive load migration systems for PVM, Proceeedings of Supercomputing '94, Washington DC, pp. 390–399, 1994Google Scholar
  12. [12]
    M. Hamdi and C.K. Lee, Dynamic load balancing of data parallel applications on a distributed network, Proceedings of 1995 International Conference on Supercomputing, Barcelona, pp. 170–179, 1995Google Scholar
  13. [13]
    R. von Hanxleden and L.R. Scott, Load balancing on message passing architectures, Journal of Parallel and Distributed Computing, v. 13, pp. 312–324, 1991CrossRefGoogle Scholar
  14. [14]
    R. Diekmann, B. Monien and R. Preis, Load Balancing Strategies for Distributed Memory Machines, Parallel and Distributed Processing for Computational Mechanics: Systems and Tools, B.H.V. Topping (ed.), Saxe-Coburg, 1998Google Scholar
  15. [15]
    T. Decker, M. Fischer, R. Lüling and S. Tschöke, A Distributed Load Balancing Algorithm for Heterogeneous Parallel Computing Systems, Proceedings of the 1998 International Conference on Parallel and Distributed Processing Techniques and Applications (PDPTA'98), H. R. Arabnia (ed.), CSREA Press, Volume II, pp. 933–940, 1998.Google Scholar
  16. [16]
    http://www.esi.fr/products/crash/index.htmlGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • G. D. van Albada
    • 1
  • J. Clinckemaillie
    • 2
  • A. H. L. Emmen
    • 3
  • J. Gehring
    • 4
  • O. Heinz
    • 4
  • F. van der Linden
    • 1
  • B. J. Overeinder
    • 1
  • A. Reinefeld
    • 5
  • P. M. A. Sloot
    • 1
  1. 1.Department of Computer ScienceUniversiteit van AmsterdamAmsterdamThe Netherlands
  2. 2.Engineering Systems InternationalRungis SILIC 270France
  3. 3.Genias Benelux BVAlmereThe Netherlands
  4. 4.Paderborn Center for Parallel ComputingPaderbornGermany
  5. 5.Konrad-Zuse-Zentrum für InformationstechnikBerlinGermany

Personalised recommendations