Advertisement

Parallelization of gridless finite-size-particle plasma simulation codes

  • S. Briguglio
  • G. Vlad
  • G. Fogaccia
  • B. Di Martino
Track C2: Computational Science
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1593)

Abstract

The main features of gridless finite-size-particle (FSP) codes are discussed, from the point of view of the performances that can be obtained, with respect both to the spatial-resolution level and the efficiency of parallel particle simulations. It is shown that such codes are particularly suited for particle-decomposition parallelization on distributed-memory architectures, as they present a strong reduction, in comparison with particle-in-cell (PIC) codes, of the memory and computational offsets related to storing and updating the replicated fluctuating-field arrays.

Keywords

Domain Decomposition Spatial Grid Empty Symbol Plasma Simulation Memory Request 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. K. Birdsall and A. B. Langdon, Plasma Physics via Computer Simulation (McGraw-Hill, New York, 1985).Google Scholar
  2. 2.
    A. Sestero, “Basic Interactions in Real Plasmas and in the Plasmas of Numerical Experiments”, Il Nuovo Cimento 9B (1972) 222–232.Google Scholar
  3. 3.
    P. C. Liewer and V. K. Decyk, “A General Concurrent Algorithm for Plasma Particle-in-Cell Codes', J. Computational Phys. 85 (1989) 302–322.CrossRefGoogle Scholar
  4. 4.
    B. Di Martino, S. Briguglio, G. Vlad and P. Sguazzero, “Parallel Plasma Simulation in High Performance Fortran”, in High Performance Computing and Networking, (Springer, Berlin, 1998) 203–212.CrossRefGoogle Scholar
  5. 5.
    A. B. Langdon and C. K. Bridsall, “Theory of plasma simulation using finite-size particles”, Phys. of Fluids 13 (1970) 2115–2122.CrossRefGoogle Scholar
  6. 6.
    S. Briguglio, G. Vlad, F. Zonca, and C. Kar, “Hybrid magnetohydrodynamicgyrokinetic simulation of toroidal Alfvén modes', Phys. Plasmas 2 (1995) 3711–3723.CrossRefGoogle Scholar
  7. 7.
    L. Chen and F. Zonca, “Theory of Shear Alfvén Waves in Toroidal Plasmas”, Physica Scripta T60 (1995) 81–90.Google Scholar
  8. 8.
    S. Briguglio, F. Zonca, and G. Vlad, “Hybrid Magnetohydrodynamic-Particle Simulation of Linear and Nonlinear Evolution of Alfvén Modes in Tokamaks', Phys. Plasmas 5 (1998) 3287–3301.CrossRefGoogle Scholar
  9. 9.
    H. Richardson, “High Performance Fortran: history, overview and current developments”, Tech. Rep. TMC-261, Thinking Machines Corporation, 1996.Google Scholar
  10. 10.
    M. Gupta, S. Midkiff, E. Schonberg, V. Seshadri, D. Shields, K. Y. Wang, W. M. Ching, T. Ngo, “A HPF Compiler for the IBM SP2”, in: Proc. SuperComputing '95 (ACM, 1995).Google Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • S. Briguglio
    • 1
  • G. Vlad
    • 1
  • G. Fogaccia
    • 1
  • B. Di Martino
    • 1
  1. 1.Associazione Euratom-ENEA sulla Fusione, C.R. FrascatiFrascati, RomeItaly

Personalised recommendations