Advertisement

Computer simulation of ageing with an extended penna model

  • A. Z. Maksymowicz
  • M. Bubak
  • K. Zajăc
  • M. Magdoń
Track C1: (Industrial) End-user Applications of HPCN
Part of the Lecture Notes in Computer Science book series (LNCS, volume 1593)

Abstract

This paper presents the results of computer simulation obtained with two modifications of the Penna bit-string model of biological ageing. Extinction of population may be caused by number of reasons, overhunting or too many harmful mutations inherited by offsprings among them. In this work we concentrate on population growth dynamics and their age distribution characteristics, such as number of mutations or survival rate, for different hunting and/or inherited harmful mutations rates, and discuss the role of bad mutations threshold fluctuations for possible improvement in health of the final population.

Keywords

Mutation Rate Cellular Automaton Critical Line Final Population Environmental Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Stauffer, D.: Computer simulation with integer operations: from Ising model and cellular automata to amphiphilic systems and biology, in: Borcherds, P., Bubak, M., and Maksymowicz, A., (Eds.), Proceedings of the 8 Joint EPS-APS International Conference on Physics Computing, Kraków, September 17–21, 1996, Kraków, Poland, pp. 494–499.Google Scholar
  2. 2.
    Bernaschi, M., Castiglionne, Succi, S.: A parallel simulator of the immune response, in: Sloot, P., Bubak, M., Hertzberger, B., (Eds.), Proc. Int. Conf. High Performance Computing and Networking, Amsterdam, April 21–23, 1998, Lecture Notes in Computer Science 1401, Springer, 1998, pp. 163–172.Google Scholar
  3. 3.
    Bernardes, A. T.: Monte Carlo Simulations of Biological Ageing, Ann. Rev. of Computational Physics 4 (1996) 359.Google Scholar
  4. 4.
    Penna T. J. P.: A Bit-String Model for Biological Ageing. J. Stat. Phys. 78 (1995) 1629.CrossRefGoogle Scholar
  5. 5.
    Penna T. J. P., Stauffer D: Efficient Monte Carlo Simulations for Biological Ageing, Int. J. Mod. Phys. C6 (1995) 233.Google Scholar
  6. 6.
    Brown D and Rolhery P.: Models in Biology: Mathematics, Statistics and Computing, Wiley, New York, 1993.zbMATHGoogle Scholar
  7. 7.
    Martins, S.G.F., Penna, T.J.P.: Computer simulation of sexual selection on agestructured population. Int. J. Modern Physics C, 9 (1998) 491–496.CrossRefGoogle Scholar
  8. 8.
    Maksymowicz A. Z., Bubak M., Sitkowski T., Stauffer D, and Kopeć M: Simulation of Biological Ageing for Penna Model, Suppl. of Medical & Biological Engineering & Computing 35 (1997) 599.Google Scholar
  9. 9.
    Copp A. J., Trends Genet. 11 (1995) 87.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1999

Authors and Affiliations

  • A. Z. Maksymowicz
    • 1
  • M. Bubak
    • 2
    • 3
  • K. Zajăc
    • 2
  • M. Magdoń
    • 4
  1. 1.Department of Physics and Nuclear TechniquesAGH Mickiewicza 30KrakówPoland
  2. 2.Institute of Computer ScienceAGHKrakówPoland
  3. 3.Academic Computer Centre CYFRONETKrakówPoland
  4. 4.Department of Mathematical StatisticsAgriculture UniversityKrakówPoland

Personalised recommendations